Skip to main content

Polyunsaturated Fatty Acids and Infant Nutrition

  • Chapter
Dietary ω3 and ω6 Fatty Acids

Abstract

Infants consume n−6 and n−3 fatty acids both as linoleic (18:2n−6) and linolenic (18:3n−3) acids and as their 20 and 22 carbon products of elongation and desaturation. Abnormal elevation of eicosatrienoic acid (20:3n−9) occurs with diets deficient in n−6 and n−3 fatty acids since of these families only the n−9 family can be synthesized de novo by mammals. Human symptoms of deficiency include scaly dermatitis, hair loss, and impaired wound healing. If deficiency occurs during development, growth is limited. When n−3 but not n−6 fatty acids are deficient, animals grow normally but demonstrate subtle differences in retinal physiology, visual acuity, and learning.1–6 Such an n−3 deficiency can be produced by feeding diets with very high ratios of n−6 to n−3 fatty acids to developing animals as shown by Galli and coworkers.7 Normally, docosahexaenoic acid (22:6n−3) is a major component of central nervous system synaptosomes and photoreceptor disk membranes. 8–10 In n−3 deficiency, docosahexaenoic acid (22:6n−3) is partially replaced by the equivalent elongation-desaturation product of linoleic acid, docosapentaenoic acid (22:5n−6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Benolken, R. E. Anderson, and T. G. Wheeler, Membrane fatty acids associated with the electrical response in visual excitation, Science 182: 1253 (1973).

    Article  PubMed  CAS  Google Scholar 

  2. M. Neuringer, W. E. Connor, and S. L. Luck, Omega-3 fatty acid deficiency in rhesus monekys: Depletion of retinal docosahexaenoic acid and abnormal electroreginograms, Am. J. Clin. Nutr. 43: 706 (1985).

    Google Scholar 

  3. M. Neuringer, W. E. Connor, C. Van Petten, and L. Barstad, Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys, J. Clin. Invest. 73: 272 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. N. Yamamoto, M. Saitoh, A. Moriuchi, M. Nomura, and H. Okuyama, Effect of dietary alpha linolenate/linoleate balance on brain lipid compositions and learning ability of rats, J. Lipid Res. 28: 144 (1987).

    PubMed  CAS  Google Scholar 

  5. M. Neuringer and W. E. Connor, The importance of dietary n-3 fatty acids in the development of the retina and nervous system, in: “Proceedings of the AOCS Short Course on Polyunsaturated Fatty Acids and Eicosanoids,” W. E. M. Lands (ed.), American Oil Chemists Society, Champaign, IL (1987).

    Google Scholar 

  6. H. Okuyama, M. Saitoh, Y. Naito, T. Hori, A. Hashimoto, A. Moriuchi, and N. Yamamoto, Re-evaluation of the essentiality of alphalinolenic acid in rats, in: “Proceedings of the AOCS Short Course on Polyunsaturated Fatty Acids and Eicosanoids,” W. E. M. Lands (ed.), American Oil Chemists Society, Champaign, IL (1987).

    Google Scholar 

  7. C. Galli, H. I. Trzeciak, and R. Paoletti, Effect of dietary fatty acids on the fatty acid composition of brain ethanolamine phosphoglyceride: Reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids, Biochim. Biophys. Acta 248: 449 (1971).

    Article  CAS  Google Scholar 

  8. J. S. O’Brien, D. L. Fillerup, and J. F. Mean, Quantification of fatty acid and fatty aldehyde composition of ethanolamine choline and serine phosphoglycerides in human cerebral gray and white matter, J. Lipid Res. 5: 329 (1964).

    PubMed  Google Scholar 

  9. R. E. Anderson, M. B. Maude, and W. Zimmerman, Lipids of ocular tissues. X. Lipid composition of subcellular fractions of bovine retina, Vision Res. 15: 1087 (1975).

    Article  PubMed  CAS  Google Scholar 

  10. S. J. Fliesler and R. E. Anderson, Prog. Lipid Res. 22: 79 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. M. T. Clandinin, J. E. Chappell, S. Leong, T. Heim, P. R. Swyer, and G. W. Chance, Intrauterine fatty acid accretion rates in human brain: Implications for fatty acid requirements, Early Hum. Dev. 4: 121 (1980).

    CAS  Google Scholar 

  12. L. Svennerholm, Distribution and fatty acid composition of phosphoglycerides in normal human brain, J. Lipid Res. 9: 570 (1968).

    PubMed  CAS  Google Scholar 

  13. M. T. Clandinin, J. E. Chappell, T. Heim, P. R. Swyer, and G. W. Chance, Fatty acid accretion in fetal and neonatal liver: Implications for fatty acid requirements, Early Hum. Dev. 5: 1 (1981).

    CAS  Google Scholar 

  14. J. C. Putnam, S. E. Carlson, P. W. DeVoe, and L. A. Barness, The effect of variations in dietary fatty acids on the fatty acid composition of erythrocyte phosphatidylcholine and phosphatidylethanolamine in human infants, Am. J. Clin. Nutr. 36: 106 (1982).

    PubMed  CAS  Google Scholar 

  15. S. E. Carlson, P. G. Rhodes, and M. G. Ferguson, Docosahexaenoic acid status of preterm infants at birth and following feeding with human milk or formula, Am. J. Clin. Nutr. 45: 798 (1986).

    Google Scholar 

  16. S. E. Carlson, P. G. Rhodes, V. S. Rao, and D. E. Goldgar, Effect of fish oil supplementation on the omega-3 fatty acid content of red blood cell membranes in preterm infants, Pediatr. Res. 21: 507 (1987).

    CAS  Google Scholar 

  17. C-C. F. Liu, S. E. Carlson, P. G. Rhodes, V. S. Rao, and E. F. Meydrech, Increase in plasma phospholipid docosahexaenoic acids as a reflection of their intake and mode of administration, Pediatr. Res. 22: 292 (1987).

    CAS  Google Scholar 

  18. S. E. Carlson, Docosahexaenoic acid in mammalian development, in: “31st Perinatal and Developmental Symposium, Mead Johnson Symposium on Infant Nutrition,” Mead Johnson and Co., Evansville, IN (1987) (in press).

    Google Scholar 

  19. M. A. Crawford, N. M. Casperd, and A. J. Sinclair, The long chain metabolites of linoleic and linolenic acids in liver and brain in herbivores, Comp. Biochem. Physiol. 54B: 395 (1976).

    Article  CAS  Google Scholar 

  20. A. J. Sinclair and M. A. Crawford, The accumulation of arachidonate and docosahexaenoate in the developing rat brain, J. Neurochem. 19: 1753 (1972).

    Article  PubMed  CAS  Google Scholar 

  21. S. E. Carlson, J. D. Carver, and S. G. House, High fat diets varying in ratios of polyunsaturated to saturated fatty acid and linoleic to linolenic acid: A comparison of rat neural and red blood cell membrane phospholipids, J. Nutr. 116: 718 (1986).

    PubMed  CAS  Google Scholar 

  22. M. Neuringer, W. E. Connor, C. Van Petten, and L. Barstad, Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys, J. Clin. Invest. 73: 272 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carlson, S.E. (1989). Polyunsaturated Fatty Acids and Infant Nutrition. In: Galli, C., Simopoulos, A.P. (eds) Dietary ω3 and ω6 Fatty Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2043-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2043-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2045-7

  • Online ISBN: 978-1-4757-2043-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics