Skip to main content

Summary

To study the structure of the ras gene family, we devised an original oligonucleotide strategy and isolated cDNAs for several new ras-related proteins: the ra1A protein (50% a.a. identity with ras) and the rab proteins, related to the yeast YPT and SEC4 proteins. These new isolates, as well as drosophila D-ras3 and rho probes were then used to precise the structure of the ras family, in human.

At present, the ras family includes three main branches represented by ras, rho and rab genes. 1) The first branch includes rasH, rasK and rasN/ R-ras/ra1A and ra1B/rap1A and rap1B/rap2. 2) So far, the second branch only includes the rhoA, rhoB and rhoC proteins sharing 80–90% aa identity, it is likely that other proteins remain to be discovered in this branch. 3) The third branch includes rab1 (homologous to yeast YPT)/rab2/rab3A and rab3B/rab4/rab5/rab6 (homologous to the YPT2 protein of fission yeast). A large array of evidence coming from yeast studies implicate these proteins in secretion.

All ras-related proteins share four regions of high homology corresponding to the GTP binding site in positions 10–17, 57–63, 113–120 and 143–149 ; however significant differences are found in these regions: rho proteins have Gly 12 but not Gly 13, rab proteins have Gly 13 but not Gly 12 (rab3 and rab5 have neither Gly 12 nor Gly 13) and rap proteins have a Thr instead of Gln 61, suggesting that these proteins might differ in their GTPase activities and/or GTP/GDP exchange rates. All ras-related proteins possess a Cystein near the C-terminus but closely surrounding sequences are specific, suggesting a role in the different intracellular locations of these proteins. Other external regions are differentially conserved in each branch such as region 32–42, known as the putative “effector” region, for the ras branch (striclty identical in ras and rap 1 proteins) while the most conserved external loop in the rab proteins is around position 63–73.

We have expressed several of these proteins in E. Coli and confirmed their GTP binding ability; we are now studying their biochemical and functional specificities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J., and Mc Cormick, F. (198). Guanosine Triphosphatase Activating Protein (GAP) interacts with the p21 ras effector binding domain. Science, 240, 518–521.

    Google Scholar 

  • Anderson, P. and Lacal, J.C. (1987). Expression of the Aplysia californica rho gene in Escherichia coli: purification and characterization of its encoded p21 product. Mol. Cell. Biol. 7, 3620–3628.

    PubMed  CAS  Google Scholar 

  • Barbacid, M. (1987). ras Genes. Ann. Rev. Biochem. 56, 779–827.

    Article  CAS  Google Scholar 

  • Bar-Sagi, D. and Feramisco, J.R. (1986). Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science, 233, 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  • Calés, C., Hancock, J.F., Marshall, C.J. and Hall A. (1988). The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature, 332, 548–551.

    Article  PubMed  Google Scholar 

  • Camonis, J. and Jacquet, M. (1988). A new ras mutation that supresses the CDC25 gene requirement for growth of Saccharomyces Cerevisiae. Mol. Cell. Biol., 8, 2980–2983.

    PubMed  CAS  Google Scholar 

  • Chardin, P. and Tavitian A. (1986). The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J. 5, 2203–2208.

    PubMed  CAS  Google Scholar 

  • Chardin, P., Madaule, P. and Tavitian A. (1988) Coding sequence of human rho cDNAs clone 6 and clone 9. Nucleic Acids Res. 16, in the press.

    Google Scholar 

  • de Vos, A.M., Tong, L., Mil burn, M.V., Mathias, P.M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E. and Kim, S.-H. (1988) Science, 239, 888–893.

    Article  PubMed  Google Scholar 

  • Fukui, Y., Kozasa, T., Kaziro, Y., Takeda, T. and Yamamoto, M. (1986). Role of a ras homolog in the life cycle of schizo-saccharomyces pombe. Cell, 44, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Gallwitz, D., Donath, C. and Sander C. (1983). A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature 306, 704–707.

    Article  PubMed  CAS  Google Scholar 

  • Goud, B., Salminen, A., Walworth, N.C., and Novick, P.J. (1988). A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in Yeast: Cell, 53, 753–768.

    PubMed  CAS  Google Scholar 

  • Leon, J., Guerrero, I. and Pellicer, A. (1987). Differential expression of the ras gene family in mice. Mol. Cell. Biol. 7, 1535–1540.

    PubMed  CAS  Google Scholar 

  • Lowe, D., Capon, D., Delwart, E., Sakaguchi, A., Naylor, S. and Goeddel, D. (1987). Structure of the human and murine R-ras genes, novel genes closely related to ras proto-oncogenes. Cell 48, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, D. and Goeddel, D. (1987). Heterologous expression and characterization of the human R-ras gene product. Mol. Cell. Biol. 7, 2845–2856.

    PubMed  CAS  Google Scholar 

  • Madaule, P. and Axel, R. (1985). A novel ras-related gene family. Cell 41, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Madaule, P., Axel, R. and Myers, A. (1987). Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 84, 779–783.

    Article  PubMed  CAS  Google Scholar 

  • Melançon, P., Glick, B.S., Malhotra, V., Weidman, P.J., Serafini, T., Gleason, M.L., Orci, L. and Rothman J.E. (1987). Involvement of GTP-binding “G” proteins in Transport through the Golgi Stack. Cell, 51, 1053–1062.

    Article  PubMed  Google Scholar 

  • Mozer, B., Marlor, R., Parkhurst, S. and Corces, V. (1985). Characterization and Develomental Expression of a Drosophila ras oncogene. Mol. Cell. Biol. 5, 885–889.

    PubMed  CAS  Google Scholar 

  • Olofsson, B., Chardin, P., Touchot, N., Zahraoui, A. and Tavitian A. (1988). Expression of the ras-related ra7A, rho12 and rab genes in adult mouse tissues. Oncogene, 2.

    Google Scholar 

  • Pizon, V., Chardin, P., Lerosey, I., Olofsson B. and Tavitian A. (1988a). Human cDNAs rapl and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region. Oncogene, 2.

    Google Scholar 

  • Pizon, V., Lerosey, I., Chardin, P. and Tavitian A. (1988b). Nucleotide sequence of a human cDNA encoding a ras-related protein (raplB). Nucleic. Acids. Res., 16, 15.

    Article  Google Scholar 

  • Salminen, A. and Novick, P. (1987). A ras-like protein is required for a post-golgi event in yeast secretion. Cell 49, 527–538.

    Article  PubMed  CAS  Google Scholar 

  • Schejter, E. and Shilo, B.-Z. (1985). Characterization of functional domains of p21 ras by use of chimeric genes. EMBO J. 4, 407–412.

    PubMed  CAS  Google Scholar 

  • Schmitt, A., Wagner, P., Pfaff, E. and Gallwitz, D. (1986). The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Cell 47, 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Segev, N. and Botstein, D. (1987). The ras-like yeast YPT1 gene is itself essential for growth, sporulation, and starvation response. Mol. Cell. Biol. 7, 2367–2377.

    PubMed  CAS  Google Scholar 

  • Segev, N., Mulhoi land, J. and Botstein, D. (1988) The Yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell, 52, 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Seuwen, K., Lagarde, A. and Pouyssegur, J. (1988). Deregulation of hamster fibroblast proliferation by mutated ras oncogenes is not mediated by constitutive activation of phosphoinositide-specific phospholipase C. EMBO J. 7, 161–168.

    PubMed  CAS  Google Scholar 

  • Sigal, I.S., Gibbs, J.B., D’Alonzo, J.S., and Scolnick, E.M. (1986), Proc. Natl. Acad. Sci. USA, 83, 4725–4729.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, M., Eiste, A., Greenberg, S., Schwartz, J., Aldrich, T. and Fürth, M. (1986). Abundant expression of ras proteins in Aplysia neurons. J. Cell Biol. 103, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Touchot, N., Chardin P. and Tavitian, A. (1987). Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc. Natl. Acad. Sci. USA 84, 8210–8214.

    Article  PubMed  CAS  Google Scholar 

  • Trahey, M. and Me Cormick, F. (1987). A cytoplasmic protein stimulates Normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science, 238, 542–545.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, J., Sczakiel, G., Feuerstein, J., John, J., Goody, R. and Wittinghofer, A. (1986). Expression of p21 proteins in Escherichia coli and stereochemistry of the nucleotide-binding site. EMBO J. 5, 1351–1358.

    PubMed  CAS  Google Scholar 

  • Wagner, P., Molenaar, C., Rauh, A., Brökel, R., Schmitt, H. and Gallwitz, D. (1987). Biochemical properties of the ras-related YPT protein in yeast: a mutational analysis. EMBO J., 6, 2373–2379.

    PubMed  CAS  Google Scholar 

  • Warren, G., Davoust, J. and Cockcroft, A. (1984). Recycling of transferrin receptors in A431 cells is inhibited during mitosis. EMBO J., 3, 2217–2225.

    PubMed  CAS  Google Scholar 

  • Willumsen, B.M., Papageorge, A.G., Kung, H.F., Bekesi, E., Robins, T., Johnsen, M., Vass, W.C., and Lowy, D.R. (1986). Mutational analysis of a ras catalytic domain. Mo. Cell. Biol., 6, 2646–2654.

    CAS  Google Scholar 

  • Yeramian, P., Chardin P., Madaule, P. and Tavitian, A. (1987). Nucleotide sequence of human rho cDNA clone 12. Nucleic, Acids Res. 15, 1869.

    Article  CAS  Google Scholar 

  • Yu, C.-L., Tsai, M.-H. and Stacey, D. (1988). Cellular ras activity and phospholipid metabolism. Cell 52, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Zahraoui, A., Touchot, N., Chardin, P. and Tavitian, A. (1988). Complete coding sequences of the ras related rab3 and 4 cDNAs. Nucleic. Acids. Res. 16, 1204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chardin, P. et al. (1989). Structure of the Human ras Gene Family. In: Bosch, L., Kraal, B., Parmeggiani, A. (eds) The Guanine — Nucleotide Binding Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2037-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2037-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2039-6

  • Online ISBN: 978-1-4757-2037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics