Skip to main content

Genetics of Temperate Bacteriophages

  • Chapter
  • 197 Accesses

Part of the book series: Springer Series in Microbiology ((SSMIC))

Abstract

For all of the bacteriophages discussed in the preceding chapters, a successful phage infection always results in the immediate production of progeny virions. However, many bacteriophages are known for which there is an alternative outcome to phage infection. Instead of the customary unrestrained DNA replication and phage assembly, there is a temperate response in which the bacteriophage sets up housekeeping within the bacterial cell and maintains a stable relationship with that cell and all its progeny for many generations. The varied ways in which the temperate response can be accomplished are the subject of this chapter. The population dynamics of temperate and lytic viruses and their hosts have been analyzed by Stewart and Levin and are not covered here. The physical properties of the temperate bacteriophages discussed in this chapter are summarized in Table 6-1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Botstein, D. (1980). A theory of modular evolution for bacteriophages. Annals of the New York Academy of Sciences 354: 484–491.

    Article  PubMed  CAS  Google Scholar 

  • Calendar, R. (1986). Viral transactivation. Biotechnology 4: 1074–1077.

    Article  CAS  Google Scholar 

  • Calendar, R. (ed.) (1988). The Bacteriophages. New York: Plenum Press.

    Google Scholar 

  • Feiss, M. (1986). Terminase and the recognition, cutting and packaging of X chro-mosomes. Trends in Genetics 2: 100–104.

    Article  CAS  Google Scholar 

  • Symonds, N., Toussaint, A., van de Putte, P., Howe, M.M. (eds.) (1987). Phage Mu. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.

    Google Scholar 

Specialized

  • Alano, P., Dehò, G., Sironi, G., Zangrossi, S. (1986). Regulation of the plasmid state of the genetic element P4. Molecular and General Genetics 203: 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A.L., Szybalski, W. (1986). Transcriptional antitermination activity of the synthetic nut elements of coliphage lambda. I. Assembly of the nutR recognition site from boxA and nut core elements. Gene 39: 121–127.

    Article  Google Scholar 

  • Casjens, S., Huang, W.M., Hayden, M., Parr, R. (1987). Initiation of bacteriophage P22 DNA packaging series: analysis of a mutant that alters the DNA target specificity of the packaging apparatus. Journal of Molecular Biology 194: 41 1422.

    Google Scholar 

  • Dale, E.C., Christie, G.E., Calendar, R. (1986). Organization and expression of the satellite bacteriophage P4 late gene cluster. Journal of Molecular Biology 192: 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, D., Stern, B. (1986). Receptor-independent infection of Mu G(—) phage in Escherichia coli K-12. FEMS Microbiology Letters 37: 387–390.

    CAS  Google Scholar 

  • Lagos, R., Goldstein, R. (1984). Phasmid P4: manipulation of plasmid copy number and induction from the integrated state. Journal of Bacteriology 158: 208–215.

    PubMed  CAS  Google Scholar 

  • Loenen, W.A.M., Murray, N.E. (1986). Modification enhancement by the re-striction alleviation protein ( Ral) of bacteriophage lambda. Journal of MolecularBiology 190: 11–22.

    Google Scholar 

  • Schauer, A.T., Carver, D.L., Bigelow, B., Baron, L.S., Friedman, D.I. (1987). X N antitermination system: functional analysis of phage interactions with the host NusA protein. Journal of Molecular Biology 194: 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, A., Blöcker, H., Frank, R., Kahmann, R. (1986). The mom gene of bacteriophage Mu: the mechanism of methylation-dependent expression. EMBO Journal 5: 2719–2728.

    PubMed  CAS  Google Scholar 

  • Stewart, F.M. Levin, B.R. (1984). The population biology of bacterial viruses: why be temperate? Theoretical Population Biology 26: 93–117.

    Google Scholar 

  • Vershon, A.K., Liao, S-M., McClure, W.R., Sauer, R.T. (1987). Bacteriophage P22 Mnt repressor: DNA binding and effects on transcription in vitro. Journal of Molecular Biology 195: 311–322.

    Google Scholar 

  • Wiggins, B.A., Hilliker, S. (1985). Genetic and DNA mapping of the late regulation and lysis genes of Salmonella bacteriophage P22 and coliphage X. Journal of Virology 56: 1030–1033.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (1988). Genetics of Temperate Bacteriophages. In: Bacterial and Bacteriophage Genetics. Springer Series in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1995-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1995-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1997-0

  • Online ISBN: 978-1-4757-1995-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics