Skip to main content

The ras Pathway: A Model for the Control of Proliferation in Animal Cells

  • Chapter
Book cover Biology of Growth Factors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 234))

Abstract

Scrupulous control over cellular proliferation is essential for the survival of a multicellular organism, yet little is known about the mechanism of this control. A variety of factors are known to influence cell division in both positive and negative ways. These include diffusible factors and the results of cell-cell contact. While the ultimate decision concerning cell division is most likely made at the molecular level within a specific cell, this decision must be based upon the signals received from outside the cell. In this study data and hypotheses are presented primarily regarding the means by which extracellular proliferative signals are transferred into the cell. This discussion, therefore, represents an important but limited aspect of the control of proliferation within the organism. While the discussion will center primarily upon a presentation of data, hypotheses relating to these data will also be included. In many cases, the hypotheses are only speculative at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbacid, M., 1987, ras genes, Annual. Rev. Biochem., (in press).

    Google Scholar 

  • Bar-Sagi, D. and Feramisco, J.R., 1986, Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science, 233: 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M.J., 1984, Inositol triphosphate and diacylglycerol as second messengers, Biochem. J., 220: 345–360.

    CAS  PubMed  Google Scholar 

  • Brugge, J.S., 1986, The p35/p36 substrates of protein-tyrosine kinases as inhibitors of phospholipase A2, Cell, 46: 149–150.

    Article  CAS  PubMed  Google Scholar 

  • Chambard, J.C., Paris, S., L’Allemain, G., and Pouyssegur, J., 1987, Two growth factor signalling pathways in fibroblasts distinguished by pertusis toxin, Nature, 326: 800–803.

    Article  CAS  PubMed  Google Scholar 

  • Cockcroft, S. and Gomperts, B.D., 1985, Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature, 314: 534–536.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, F.F., Dennis, E.A., Powell, M., and Glenney, J.R., 1987, Inhibition of phospholipase A9 by “lipocortins” and calpactins,an effect of binding to substrate phospholipids, J.Biol. Chem., 262: 1698–1705.

    CAS  PubMed  Google Scholar 

  • Deshpande, A.K., and Kung, H.-F., 1987, Insulin induction of Xenopus Bevis oocyte maturation is inhibited by monoclonal antibody against p2lras proteins, Mol. Cell. Biol., 3: 1285–1288.

    Google Scholar 

  • Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Devare, S.G., Robbins, K.C., Aaronson, S.A. and Antoniades, H.N., 1983, Simian sarcoma virus one gene, v-s?s, is derived from the gene (or genes) encoding a platelet-derived growth factor, Science, 221: 275–277.

    Article  CAS  PubMed  Google Scholar 

  • Downward, J., Yarden, Y. Mayes, E. Scrace, G. Totty, N., Stockwell, P., Ullrich, A., Schlessinger, J. and Waterfield, M.D., 1984, Close similarity of epidermal growth factor receptor and v-erb B oncogene protein sequences, Nature, 307:521–527

    Article  CAS  PubMed  Google Scholar 

  • Farese, R.V., Konda, T.S., Davis, J.S., Standaert, M.L., Pollet, R.J., and Cooper, D.R., 1987, Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis, Science, 236: 586–589.

    Article  CAS  PubMed  Google Scholar 

  • Furth, M.E., Davis, L.J., Fleurdelys, B. and Scolnick, E.M., 1982, Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and the cellular ras gene family, J. Virol., 43: 294–304.

    CAS  PubMed  Google Scholar 

  • Furth, M.E., Aldrich, T.H. and Cordon-Cordo, C., 1987, Expression of ras proto-oncogene in normal human tissues, Oncogene, 1: 47–58.

    CAS  PubMed  Google Scholar 

  • Gilman, A.G., 1984, G-proteins and dual control of adenylate cyclase, Cell, 36: 577–579.

    Article  CAS  PubMed  Google Scholar 

  • Hirata, F., 1981, The regulation of lipomodulin, a phospholipase inhibitory protein, in rabbit neurophils by phosphorylation, J. Biol. Chem, 256: 7730–7733.

    CAS  PubMed  Google Scholar 

  • Kung, H.F., Smith, M.R., Bekesi, E., Manne, V. and Stacey, D.W., 1986, Reversal of transformed phenotype by monoclonal antibodies against Ha-ras p21 proteins, Exp. Cell Res., 162: 363–371.

    Article  CAS  PubMed  Google Scholar 

  • Lacal, J.G., Santos, E., Notario, V., Barbacid, M., Yamazaki, S., Kung, H.-F., Seamans, C., McAndrew, S., and Crowl,R., 1984, Expression of normal and transforming H-ras genes in Escherichla Coil and purification of their encoded p21 proteins, Proc. Natl. Acad. Scia USA, 81: 5305–5309.

    Article  CAS  Google Scholar 

  • Mercer, W.E., Avignolo, C., and Baserga, R., 1984, Role of the p53 protein in cell proliferation as studied by microinjection of monoclonal antibodies, Mol. Cell. Biol., 4: 276–281.

    CAS  PubMed  Google Scholar 

  • Moolénaar, W.H., Kruijer, W. Tilly, B.C., Verlaan, I. Bierman, A.J. and deLaat, S.W. (1986). Growth factor-like action of phosphatidic acid. Nature 323: 171–173.

    Article  PubMed  Google Scholar 

  • Mulcahy, L.S., Smith, M.R. and Stacey, D.W., 1985, Requirement for ras proto-oncogene function during serum-stimulated growth of NIH3T3 cells, Nature, 313: 241–243.

    Article  CAS  PubMed  Google Scholar 

  • Muller, R., Bravo, R, Burckhardt, J., and Curran, T., 1984, Induction of c-fos gene and protein by growth factors precedes activation of c-myc, Nature, 312: 716–720.

    Article  CAS  PubMed  Google Scholar 

  • Papageorge, A.G., Willumsen, B.M., Johnsen, M., Kung, H.-F., Stacey, D.W., Vass, W.C. and Lowy, D.R., 1986, A transforming ras gene can provide an essential function ordinarily supplied by an endogenous ras gene, Mol. Cell.Biol., 6: 1843–1846.

    CAS  PubMed  Google Scholar 

  • Ruley, H.E., 1983, Adenovirus early region lA enables viral and cellular transforming genes to transform primary cells in culture, Nature, 304: 602–606.

    Article  CAS  PubMed  Google Scholar 

  • Scolnick, E.M., Papageorge,’ A.G. and Shih, T.Y., 1979, Guanine nucleotide binding activity as an assay for arc protein of rat-derived murine sarcoma viruses,Proc. Natl. Acad. Sci. USA, 76: 5355–5359.

    Article  CAS  Google Scholar 

  • Sherr, C.J., Rettenmier, C.W., Sacca, R., Roussel, M.F., Look, A.T. and Stanley, E.R., 1985, The c-fias proto-onçogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1, Cell, 41: 665–676.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M.R., DeGudicibus, S.J. and Stacey, D.W., 1986, Requirement for c-z-as proteins during viral oncogene transformation, Nature, 320: 540–543.

    Article  CAS  PubMed  Google Scholar 

  • Stacey, D.W., and Allfrey, V.G., 1977, Evidence for the autophagy of microinjected proteins in HeLa cells, J. Cell Biol., 75: 807–817.

    Article  CAS  PubMed  Google Scholar 

  • Stacey, D.W., and Kung, H.-F., 1984, Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein, Nature, 310: 508–511.

    Article  CAS  PubMed  Google Scholar 

  • Stacey, D.W., Watson, T., Kung, H.-F., and Curran, T., 1987, Microinjection of transforming ras protein induces c-fos expression, Mol. Cell. Biol., 7: 523–527.

    CAS  PubMed  Google Scholar 

  • Stacey, D.W., DeGudicibus, S.R.., and Smith, M.R., 1987, Cellular ras activity and tumor cell proliferation, Exptl. Cell Res., (in press).

    Google Scholar 

  • Sweet, R.W., Yokoyama, S., Kamata, T., Feramisco, J.R., Rosenberg, M. and Gross, M. (1984). The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311: 273–275.

    Article  CAS  PubMed  Google Scholar 

  • Yu, C.-L., Tsai, M.-W., and Stacey, D.W., Cellular ras activity and phospholipid metabolism, (in review).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stacey, D.W. (1988). The ras Pathway: A Model for the Control of Proliferation in Animal Cells. In: Kudlow, J.E., MacLennan, D.H., Bernstein, A., Gotlieb, A.I. (eds) Biology of Growth Factors. Advances in Experimental Medicine and Biology, vol 234. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1980-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1980-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1982-6

  • Online ISBN: 978-1-4757-1980-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics