Skip to main content

Influence of the Lipid Environment on Insulin Binding to Placental Membranes from Normal and Diabetic Mothers

  • Chapter
Cellular Biology and Pharmacology of the Placenta

Part of the book series: Trophoblast Research ((TR))

  • 28 Accesses

Abstract

It is generally accepted that the function of membrane proteins is affected by the fluidity of the membrane (Sandermann, 1978; Kates and Kuksis, 1980; Shinitzky et al., 1980; Chapman, 1983). Temperature (Lee, 1977), the protein to lipid content (Shinitzky et al., 1980) and the lipid composition (Phillips et al., 1969; Borochov et al., 1979) are the major determinants of membrane fluidity. Effects of fluidity on receptor specificity and affinity have been reported for the thyrotropin receptor (Mehdi et al., 1977; Lee et al., 1978), for the serotonin receptor (Heron et al., 1980) and for the insulin receptor (Amatruda and Finch, 1979; Grunfeld et al., 1981; McCaleb and Donner, 1981; Ginsberg et al., 1981; Gould et al., 1982; Bar et al., 1984). The studies directed to the modulation of membrane proteins by the lipid environment have been accomplished on cultured cells by dietary manipulations leading to a modification of either the fatty acid composition or phospholipid headgroups. Corresponding studies with isolated membranes used physical techniques which altered the bulk fluidity of the membrane or by treatment of the membranes with phospholipases (Gould and Ginsberg, 1984). In the present study we chose a different approach. The affinity of insulin receptors from various tissues has been repeatedly shown to be altered in diabetes mellitus (Andreani et al., 1981). We analyzed the insulin receptors in placental membranes from normal and diabetic mothers and correlated the receptor affinities with parameters which are known to determine membrane fluidity. Thus, we did not study the insulin receptor system in an artificially altered lipid environment but investigated how the receptor affinity is affected by an in vivo modification of the membrane as a result of a pathological state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amatruda, J.M. and Finch, E.D. (1979) Modulation of hexose uptake and insulin action by cell membrane fluidity. J. Biol. Chem. 254, 2619–2625.

    CAS  PubMed  Google Scholar 

  • Andreani, D., DePirro, R., Lauro, R., Olefsky, J.M., and Roth, J. (eds.) (1980) Current Views on Insulin Receptors, New York, Academic Press.

    Google Scholar 

  • Arkejsteijn, C.L.M. (9176) A kinetic method of serum 5’-nucleotidase using stabilised gluatmate dehydrogenase. J. Clin. Chem. Clin. Biochem. 14, 155–158.

    Google Scholar 

  • Bar, R.S., Dolash, S., Spector, A.A., Kaduce, T.L., and Figard, Ph.D. (1984) Effects of membrane lipid unsaturation on the interactions of insulin and multiplicating stimulating activity with endothelial cells. Biochim. Biophys. Acta 804, 466473.

    Google Scholar 

  • Borochov, H., Abbott, R.E., Schachter, D., and Shinitzky, K. (1979) Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity. Biochem. 18, 251–255.

    Article  CAS  Google Scholar 

  • Bowers, G.N., Jr. (1959) Measurement of isocitric dehydrogenase activity in body fluids. Clin. Chem. 5, 509–518.

    CAS  PubMed  Google Scholar 

  • Bowers, G.N., Jr., and McComb, R.B. (1966) A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin. Chem. 12, 7089.

    Google Scholar 

  • Chapman, D. (1983) Biomembrane fluidity: The concept and its development. In: Membrane Fluidity in Biology, Vol. 2, New York, Academic Press, pp. 5–42.

    Google Scholar 

  • Duran-Garcia, S., Nieto, J.G., and Cabello, A.M. (1979) Effect of gestational diabetes on insulin receptors in human placenta. Diabetologia 16, 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Fishman, W.H., Kato, K., Anstiss, C.L., and Green, S. (1967) Human serum betaglucuronidase; its measurement and some of its properties. Clin. Chim. Acta 15, 435–447.

    Article  CAS  PubMed  Google Scholar 

  • Fiske, C.H. and Subbarow, Y. (1926) The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400.

    Google Scholar 

  • Ginsberg, B., Brown, T.J., Simon, I., and Spector, A.A. (1981) Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes 30, 773–780.

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg, B.H., Jabour, J., and Spector, A.A. (1982) Effect of alterations in membrane lipid unsaturation on the properties of the insulin receptor of Ehrlich ascites cells. Biochim. Biophys. Acta 690, 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Gould, R.J., Ginsberg, B.H., and Spector, A.A. (1982) Lipid effects on the binding properties of a reconstituted insulin receptor. J. Biol. Chem. 257, 477–484.

    CAS  PubMed  Google Scholar 

  • Gould, R.J. and Ginsberg, B.H. (1984) Biochemistry and analysis of membrane phospholipids: Application to membrane receptors. In: Membranes, Detergents, and Receptor Solubilization, (eds.), J.C. Venter and L.C. Harrison, New York, Alan R. Liss, pp. 65–83.

    Google Scholar 

  • Grunfeld, C., Baird, K.L., and Kahn, C.R. (1981) Maintenance of 3T3–L1 cells in culture media containing saturated fatty acids decreases insulin binding and insulin action. Biochem. Biophys. Res. Commun. 103, 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Haour, F., and Bertrand, J. (1974) Insulin receptors in the plasma membranes of human placenta. J. Clin. Endocrinol. Metab. 38, 334–337.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, L.C., Billington, T., Clark, S., Nichols, R., East, I., and Martin, F.I.R. (1977) Decreased binding of insulin by receptors on placental membranes from diabetic mothers. J. Clin. Endocrinol. Metab. 44, 206–209.

    CAS  Google Scholar 

  • Harrison, L.C. and Itin, A. (1980) Purification of the insulin receptor from human placenta by chromatography on immobilized wheat germ lectin and receptor antibodies. Biol. Chem. 255, 12066–12072.

    CAS  Google Scholar 

  • Heron, D.S., Shinitzky, M., Hershkowitz, M., and Samuel, D. (1980) Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl. Acad. Sci. USA 77, 7463–7467.

    Article  CAS  PubMed  Google Scholar 

  • Kates, M. and Kuksis, A., (eds.) (1980) Membrane Fluidity: Biophysical Techniques and Cellular Regulation, Clifton, New Jersey, The Humana Press.

    Google Scholar 

  • Lands, W.E.M. (1980) Fluidity of membrane lipids. In: Membrane Fluidity. Biophysical Techniques and Cellular Regulation, (eds.), M. Kates and A. Kuksis, Clifton, New Jersey, The Humana Press, pp. 69–73.

    Google Scholar 

  • Lee, A.G. (1977) Lipid phase transitions and phase diagrams. I. Lipid phase transitions. Biochim. Biophys. Acta 472, 237–281.

    Article  CAS  PubMed  Google Scholar 

  • Lee, G., Consiglio, E., Habig, W., Dyer, S., Hardegree, C., and Kohn, L.D. (1978) Structure-function studies of receptors for thyrotropin and tetanus toxin. Lipid modulation of effect or binding to glycoprotein receptor component. Biochem. Biophys. Res. Commun. 83, 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  • McCaleb, M.L. and Donner, D.B. (1981) Affinity of the hepatic insulin receptor is influenced by membrane phospholipids. J. Biol. Chem. 256, 11051–11057.

    CAS  PubMed  Google Scholar 

  • Mehdi, S.Q., Nussey, S.S., Shindelman, J.E., and Kriss, J.P. (1977) Influence of lipid substitution on thyrotropin-receptor interactions in artificial vesicles. Endocrinol. 101, 1406–1412.

    Article  CAS  Google Scholar 

  • Morrison, W.R. and Smith, L.M. (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boronfluoride-methanol. J. Lipid Res. 5, 600608.

    Google Scholar 

  • Nelson, D.M., Smith, R.M., and Jarett, L. (1978) Nonuniform distribution and grouping of insulin receptors on the surface of human placental syncytial trophoblast. Diabetes 27, 530–538.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, M.C., Williams, R.M., and Chapman, D. (1969) On nature of hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3, 234–244.

    Article  CAS  Google Scholar 

  • Posner, B.I. (1973) Insulin receptors in human and animal placental tissue. Diabetes 23, 209–217.

    Google Scholar 

  • Sandermann, H., Jr. (1978) Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515, 209–237.

    Article  CAS  PubMed  Google Scholar 

  • Shinitzky, M. and Inbar, M. (1976) Microviscosity parameters and protein mobility in biological membranes. Biochim. Biophys. Acta 43, 133–149.

    Article  Google Scholar 

  • Shinitzky, M. and Henkart, P. (1980) Fluidity of cell membranes–current concepts and trends. Int. Rev. Cytol. 60, 121–147.

    Article  Google Scholar 

  • Shinitzky, M., Borochov, H., and Wilbrandt, W. (1980) Lipid fluidity as a physiological regulator of membrane transport and enzyme activities. In: Membrane Transport in Erythrocytes, (eds.), H.H. Ussing and J.O. Wieth, Copenhagen, Munksgaard, pp. 91–107.

    Google Scholar 

  • Siedel, J., Schlumberger, H., Klose, S., Ziegenhorn, J., and Wahlefeld, A.W. (1981) Improved reagent for the enzymatic determination of serum cholesterol. J. Clin. Chem. Clin. Biochem. 19, 838–839.

    Google Scholar 

  • Stubbs, C.D. and Smith, A.D. (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779, 89–137.

    Article  CAS  PubMed  Google Scholar 

  • Veerkamp, J.H. and Broekhyse, R.M. (1976) Technique for the analysis of membrane lipids. In: Biochemical Analysis of Membranes, (ed.), A.H. Maddy, London, Chapman and Hall, pp. 252–282.

    Google Scholar 

  • Warren, L. (1963) Thiobarbituric acid assay of sialic acids. Meth. Enzymol. 6, 463–466.

    Article  CAS  Google Scholar 

  • Whitsett, J.A. and Lessard, J.L. (1978) Characteristics of the microvillus brush border of human placenta: Insulin receptor localization in brush border membranes. Endocrinol. 103, 1458–1468.

    Article  CAS  Google Scholar 

  • Williams, P.F., and Turtle, J.R. (1979) Purification of the insulin receptor from human placental membranes. Biochim. Biophys. Acta 579, 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Wren, J.J. and Szczepanowska, A.D. (1964) Chromatography of lipids in presence of an antioxidant, 4-methyl-2,6-di-tert-butylphenol. J. Chromatog. 14, 405–410.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Desoye, G., Weiss, P.A.M. (1987). Influence of the Lipid Environment on Insulin Binding to Placental Membranes from Normal and Diabetic Mothers. In: Miller, R.K., Thiede, H.A. (eds) Cellular Biology and Pharmacology of the Placenta. Trophoblast Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1936-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1936-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1938-3

  • Online ISBN: 978-1-4757-1936-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics