Skip to main content

Geologic Analogs: Their Value and Limitations in Carbon Dioxide Research

  • Chapter

Abstract

The CO2 research community has recently shown much interest in the use of geologic analogs to verify climate model predictions. This application rests, of course, on the premise that both climate and atmospheric CO2 have varied in the geologic past. Climate variability is widely documented in the geologic record, and CO2 changes have recently been documented in ice cores. Although there is no other direct evidence for CO2 variations in the geologic past, the relatively small size and short residence time of the atmospheric CO2 reservoir suggest strongly that it must have been sensitive to perturbations in the larger reservoirs with which it exchanges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacastow, R. B. and C. D. Keeling. 1981. Atmospheric carbon dioxide concentration and the observed airborne fraction. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 103–112. John Wiley and Sons, Chichester, England.

    Google Scholar 

  • Barron, E. J. 1983. A warm equable Cretaceous: the nature of the problem. Earth Sci. Rev. 19: 305–338.

    Article  Google Scholar 

  • Bender, M. L. 1984. On the relationship between ocean chemistry and atmospheric pCO2 during the Cenozoic. In J. E. Hansen and T. Takahashi (eds.), Climate Process and Climate Sensitivity, pp. 352–359. American Geophysical Union, Geophysical Monograph 29, Washington, D.C.

    Google Scholar 

  • Bender, M. L. and D. W. Graham. 1978. Long term constraints on the global marine carbonate system. J. Marine Res. 36: 551–567.

    CAS  Google Scholar 

  • Berger, W. H. 1982. Increase of carbon dioxide in the atmosphere during deglaciation: the Coral Reef hypothesis. Naturwissenschaften 69: 87.

    Article  CAS  Google Scholar 

  • Berner, R. A., A. C. Lasaga, and R. M. Garrets. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283: 641–683.

    Article  CAS  Google Scholar 

  • Berner, R. A., and R. Raiswell. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochim. Cosmochim. Acta 46: 1689–1705.

    Google Scholar 

  • Berner, W., H. Oeschger, and B. Stauffer. 1980. Information on the CO, cycle from ice core studies. Radiocarbon 22: 227–235.

    CAS  Google Scholar 

  • Bolin, B., A. Björkström, and K. Holmen. 1983. The simultaneous use of tracers for ocean circulation studies. Tellus 35B: 206–236.

    Google Scholar 

  • Broecker, W. S. 1981. Glacial to interglacial changes in ocean and atmosphere chemistry. In A. Berger (ed.), Climatic Variations and Variability: Facts and Theories, pp. 109–120. D. Reidel Publishing, Boston.

    Google Scholar 

  • Broecker, W. S. 1982a. Glacial to interglacial changes in ocean chemistry. Prog. Oceanography VII: 151–157.

    Article  Google Scholar 

  • Broecker, W. S. 1982b. Ocean chemistry during glacial time. Geochim Cosmochim. Acta 46: 1689–1705.

    Article  CAS  Google Scholar 

  • Broecker, W. S. and S. Broecker. 1974. Carbonate dissolution on the western flank of the East Pacific Rise. In W. W. Hay (ed.), Studies in Paleo-Oceanography, pp. 44–57. SEPM Special Publishing No. 20.

    Google Scholar 

  • Broecker, W. S. and T.-H Peng. 1984. The climate chemistry connection. In J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, pp. 327–336. American Geophysical Union, Geophysical Monograph 29, Washington, DC.

    Google Scholar 

  • Broecker, W. S., and T.-H. Peng. 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, 690 p.

    Google Scholar 

  • Broecker, W. S., T.-H. Peng, and R. Engh. 1980. Modeling the carbon system. Radiocarbon 22: 565–598.

    CAS  Google Scholar 

  • Broecker, W. S. and T. Takahashi. 1977. Neutralization of fossil fuel CO, by marine calcium carbonate. In N. R. Andersen and A. Malahoff (eds.), The Fate of Fossil Fuel CO, in the Oceans, pp. 213–241. Plenum Press, New York.

    Google Scholar 

  • Broecker, W. S. and T. Takahashi. 1978. The relationship between lysocline depth and in situ carbonate ion concentration. Deep Sea Res. 25: 65–95.

    CAS  Google Scholar 

  • Broecker, W. S. and T. Takahashi. 1984. Is there a tie between atmospheric CO2 content and ocean circulation. In J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, Annals of Geophysical Monograph 29, pp. 314–326. American Geophysical Union, Washington, D.C.

    Chapter  Google Scholar 

  • Budyko, M. I. and A. B. Ronov. 1979. Chemical evolution of the atmosphere in the Phanerozoic. Geochem. Int. 16: 1–9.

    Google Scholar 

  • Craig, H. 1957. The natural distribution of radiocarbon and the exchange time of carbon dioxide between the atmosphere and sea. Tellus 9: 1–17.

    Article  Google Scholar 

  • Edmond, J. M. and J. M. Gieskes. 1970. On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions. Geochim. Cosmochim. Acta 34: 1261–1291.

    Article  CAS  Google Scholar 

  • Delmas, R. J., J. M. Ascencio, and M. Legrand. 1980. Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature 284: 155–157.

    Article  CAS  Google Scholar 

  • Fischer, A. G. 1981. Climatic oscillations in the biosphere. In M. H. Nitecki (ed.), Biotic Crises in Ecological and Evolutionary Time, pp. 103–131. Academic Press, San Diego.

    Google Scholar 

  • Fischer, A. G. and M. A. Arthur. 1977. Secular variations in the pelagic realm. In Deep-Water Carbonate Environments, SEPM Special Publication No. 25, pp. 19–50.

    Google Scholar 

  • Frakes, L. A. 1979. Climates Throughout Geologic Time. Elsevier, Amsterdam. Garrets, R. M., A. Lerman, and F. T. Mackenzie. 1976. Controls of atmospheric OZ and CO, past, present, and future. Am. Sci. 64: 306–315.

    Google Scholar 

  • Gordon, A. L. and H. W. Taylor. 1975. Heat and salt balance within the cold waters of the world ocean. In Proceedings of Symposium on Numerical Models of Ocean Circulation, pp. 54–56. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Gorshkov, S. G. 1980. Ocean atlas reference tables (in Russian, with map). pp. 156. Department of Navigational Oceanography, Ministry of Defense, USSR. Holland, H. D. 1978. The Chemistry of the Atmosphere and Oceans. John Wiley and Sons, New York, 351 p.

    Google Scholar 

  • Ingle, S. E. 1975. Solubility of calcite in the ocean. Marine Chem. 3: 301–319.

    Article  CAS  Google Scholar 

  • Keir, R. S. 1980. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta 44: 241–252.

    Article  CAS  Google Scholar 

  • Keir, R. S. 1982. Dissolution of calcite in the deep-sea: theoretical prediction for the case of uniform size particles settling into a well-mixed sediment. Am. J. Sci. 282: 193–236.

    Article  CAS  Google Scholar 

  • Knox, F. and M. B. McElroy. 1984. Changes in atmospheric CO,: Influence of the marine biota at high latitude. J. Geophys. Res. 89: 4629–4637.

    Article  CAS  Google Scholar 

  • Ku, T. L., C. A. Huh, and P. S. Chen. 1980. Meridional distribution of 226 Ra in the eastern Pacific along GEOSECS cruise tracks. Earth Planet. Sci. Lett. 49: 293–308.

    Article  CAS  Google Scholar 

  • Li, Y.-H., T.-H. Peng, W. S. Broecker, and H. G. Ostlund. 1984. The average vertical eddy diffusion coefficient of the ocean. Tellus 36B: 212–217.

    Google Scholar 

  • Li,Y.-H., T. Takahashi, and W. S. Broecker. 1969. Degree of saturation of CaCO, in the oceans. J. Geophys. Res. 74: 5507–5525.

    Google Scholar 

  • Lyman, J. 1956. Buffer mechanism of sea water. Ph.D. Thesis, University of California, Los Angeles.

    Google Scholar 

  • Mackenzie, F. T. and J. D. Pigott. 1981. Tectonic controls of Phanerozoic sedimentary rock cycling. J. Geol. Soc. Lond. 138: 183–196.

    Article  CAS  Google Scholar 

  • McElroy, M. B. 1983. Marine biological controls on atmospheric CO2 and climate. Nature 302: 328–329.

    Article  CAS  Google Scholar 

  • McLean, D. M. 1978. Land floras: the major Late Phanerozoic atmospheric carbon dioxide/oxygen control. Science 200: 1060–1062.

    Article  CAS  Google Scholar 

  • Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Phytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in sea water at atmospheric pressure. Limnol. Oceanogr. 18: 897–907.

    CAS  Google Scholar 

  • Menard, H. W. and S. M. Smith. 1966. Hypsometry of ocean basin provinces. J. Geophys. Res. 71:(18)4305–4325.

    Google Scholar 

  • Menzel, D. W. 1974. Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter. In E. D. Goldberg (ed.), The Sea. Volume 5: Marine Chemistry, pp. 659–678. John Wiley and Sons, New York.

    Google Scholar 

  • Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn. 1982. Ice core sample measurements give atmospheric CO2 content during the past 40,000 years. Nature 295: 220–223.

    Article  CAS  Google Scholar 

  • Newman, M. J. and R. T. Rood. 1977. Implication of solar evolution for the Earth’s early atmosphere. Science 198: 1035–1037.

    Article  CAS  Google Scholar 

  • Owen, T., R. D. Cess, and V. Ramanathan. 1979. Enhanced CO, greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277: 640–642.

    Article  CAS  Google Scholar 

  • Peng, T.-H and W. S. Broecker. 1978. Effect of sediment mixing on the rate of calcite dissolution by fossil fuel CO2. In Sea-Sediment Interface Models, Vol. 5. No. 5, pp. 349–352. Lamont-Doherty Geological Observatory, Palisades, New York.

    Google Scholar 

  • Peng, T.-H, W. S. Broecker, G. Kipphut, and N. Shackleton. 1977. Benthic mixing in deep sea cores as determined by “C dating and its implications regarding climate stratigraphy and the fate of fossil fuel CO2. In N. Andersen and A. Malahoff (eds.), The Fate of Fossil Fuel CO2 in the Oceans, pp. 355–373. Plenum Press, New York.

    Google Scholar 

  • Perry, H. and H. H. Landsberg. 1977. Projected world energy consumption. In Energy and Climate, pp. 35–50. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Pigott, J. D. and F. T. Mackenzie. 1979. Phanerozoic ooid diagenesis: a signature of paleo-ocean and atmospheric chemistry. Geol. Soc. Am., Spec. Pap. 11: 495–496.

    Google Scholar 

  • Plummer, L. N. and E. T. Sundquist. 1982. Total individual ion activity coefficients of calcium and carbonate in seawater at 25°C and 35and salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and argonite. Geochim. Cosmochim. Acta 46: 247–258.

    Article  CAS  Google Scholar 

  • Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Strangenberger. 1982. Soil carbon pools and world life zone. Nature 298: 156–159.

    Article  CAS  Google Scholar 

  • Ronov, A. B. 1976. Volcanism, carbonate deposition, and life (Patterns of the global geochemistry of carbon). Geochem. Int. 13 (4): 172–195.

    Google Scholar 

  • Sagan, C. and G. Mullen. 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177: 52–56.

    Article  CAS  Google Scholar 

  • Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:(5929)19–22.

    Google Scholar 

  • Sarmiento, J. L. and J. R. Toggweiler. 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308: 621–624.

    Article  CAS  Google Scholar 

  • Shackleton, N. J. and A. Boersma. 1981. The climate of the Eocene ocean. J. Geol. Soc. Lond 138:(2)153–157.

    Google Scholar 

  • Shackleton, N. J., M. A. Hall, J. Line, and C. Shuxi. 1983. Carbon isotope data in core V 19–30 confirm reduced carbon dioxide concentration of the ice age atmosphere. Nature 306: 319–322.

    Article  CAS  Google Scholar 

  • Siegenthaler, U. and T. Wenk. 1984. Rapid atmospheric CO2 variations and ocean circulation. Nature 308: 624–625.

    Article  CAS  Google Scholar 

  • Sundquist, E. T., D. K. Richardson, W. S. Broecker, and T.-H. Peng. 1977. Sediment mixing and carbonate dissolution in the southeast Pacific Ocean. In N. Andersen and A. Malahoff (eds.), The Fate of Fossil Fuel CO2 in the Oceans. 429–454. Plenum Press, New York.

    Google Scholar 

  • Takahashi, T., W. S. Broecker, A. E. Bainbridge, and R. F. Weiss. 1980. Carbonate chemistry of the Atlantic, Pacific, and Indian Oceans. In The Results of the GEOSECS Expeditions, 1972–1978, Technical Report No. 1. CU-1–80. Lamont-Doherty Geological Observatory, Palisades, New York.

    Google Scholar 

  • Takahashi, T., W. S. Broecker, A. E. Bainbridge, and R. F. Weiss. 1981. Supplement to the alkalinity and total carbon dioxide concentration in the world oceans. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 159–199. John Wiley and Sons, Chichester, England.

    Google Scholar 

  • Tappan, H. 1968. Primary production, isotopes, extinctions, and the atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 4:(3)187–210.

    Google Scholar 

  • Tappan, H. and A. R. Loeblich, Jr. 1971. Geobiologic implications of fossil phytoplankton evolution and time-space distribution. In Symposium on Palynology of the Late Cretaceous and Early Tertiary. Geol. Soc. Am. Spec. Pap. 127: 247–340.

    Google Scholar 

  • Van Andel, T. H. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26: 187–194.

    Article  Google Scholar 

  • Walker, J. C. G. and P. B. Hays. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86:(C10)9776–9782.

    Google Scholar 

  • Wangersky, P. J. 1976. Particulate organic carbon in the Atlantic and Pacific oceans. Deep Sea Research 23: 457–465.

    CAS  Google Scholar 

  • Watts, J. A., Compiler. 1982. The carbon dioxide question: data sampler. In W. C. Clark (ed.), Carbon Dioxide Review: 1982, pp. 456–460. Clarendon Press, Oxford, England.

    Google Scholar 

  • Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of non-ideal gas. Marine Chem. 2: 203–215.

    Article  CAS  Google Scholar 

  • World Energy Conference. 1980. Survey of Energy Resources. Federal Institute for Geosciences and Natural Resources, Hanover, Federal Republic of Germany.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sundquist, E.T. (1986). Geologic Analogs: Their Value and Limitations in Carbon Dioxide Research. In: Trabalka, J.R., Reichle, D.E. (eds) The Changing Carbon Cycle. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1915-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1915-4_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1917-8

  • Online ISBN: 978-1-4757-1915-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics