Skip to main content

Abstract

The chemistry and biology of the vitreous body with particular reference to the macromolecular contituents that are responsible for the structure of the tissue were discussed in detail in a previous review (1). The vitreous has several unique structural features. It contains a very dilute dispersion of macromolecules that are distributed heterogeneously and very few cells. Its primary function appears to be to allow the unimpeded transmission of light to the retina. The collagen fibers are narrow, and the primary collagen present is type II. Glycoproteins and proteoglycans are associated with the collagen fibers, and it seems likely that interactions between these constituents are involved in maintaining the gel structure of the tissue. Hyaluronate (HA), also a major constituent of the vitreous in most species, was first isolated from this tissue by Meyer and Palmer in 1934 (2). Also contained in the vitreous are soluble proteins derived mainly from the blood, but the quantities of these constituents are very low under normal circumstances. In the normal eye the vitreous appears to be a quiescent compartment with its physiology being determined by its intimate relationship with the adjacent tissues, principally the retina. There is strong circumstantial evidence that the Müller cells are involved in the synthesis of the central and posterior peripheral vitreous structural constituents. Some data suggest that the anterior vitreous may be derived from the ciliary body. The importance of the relationship between the vitreous and the retina is also apparent in the development of retinal detachment and other disease states (Chapter 6). This chapter presents biochemical data concerning the macromolecular constituents of the vitreous that have been reported since the previous review (1) and discusses the data with respect to vitreous function and its relationship to the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SWANN, D.A. — Chemistry and biology of the vitreous body. Int. Rev. Exp. Pathol., 1980, 2, 1–57.

    Google Scholar 

  2. MEYER, K., PALMER, J. — J. Biol. Chem., 1934, 107, 629–639.

    CAS  Google Scholar 

  3. SWANN, D.A., SOTMAN, S. — The chemical composition of bovine vitreous collagen fibers. Biochem. J., 1980, 185, 545–554.

    PubMed  CAS  Google Scholar 

  4. SNOWDEN, J. M., SWANN, D.A. — Vitreous structure. V. The morphology and thermal stability of vitreous collagen fibers and comparison to articular cartilage (type II) collagen. Invest. Ophthalmol. Vis. Sci., 1980, 19, 610–618.

    PubMed  CAS  Google Scholar 

  5. BURKE, J. M. — An analysis of rabbit vitreous collagen. Connect. Tissue Res., 1980, 8, 49–52.

    Article  PubMed  CAS  Google Scholar 

  6. HONG, B.S., DAVISON, P. F. — Identification of type II procollagen in rabbit vitreous. Ophthalmic Res., 1985, 17, 162–167.

    Article  PubMed  CAS  Google Scholar 

  7. LINSENMAYER, T.F., GIBNEY, E., LITTLE, C. D. — Type II collagen in early embryonic chick cornea and vitreous: immunoradiochemical evidence. Exp. Eye Res., 1982, 34, 371–379.

    Article  PubMed  CAS  Google Scholar 

  8. AYAD, S., WEIS, J.B. — A new look at vitreous-humour collagen. Biochem. J., 1984, 218, 835–840.

    PubMed  CAS  Google Scholar 

  9. AYAD, S., ABEDIN, M.Z., WEISS, J.B., GRUNDY, S.M. — Characterisation of another short-chain disulphide-bonded collagen from cartilage, vitreous and intervertebral disc. FEBS Lett., 1982, 139, 300–304.

    Article  PubMed  CAS  Google Scholar 

  10. SNOWDEN, J.M., EYRE, D.R., SWANN, D.A. — Vitreous structure. VI. Age-related changes in the thermal stability and crosslinks of vitreous, articular cartilage and tendon collagen. Biochim. Biophys. Acta, 1982, 706, 153–157.

    Article  PubMed  CAS  Google Scholar 

  11. VAN DER REST, M., MAYNE, R., NINOMIYA, Y., SEIDAH, N.G., CHRÉTIEN, M., OLSEN, B.R. — The structure of type IX collagen. J. Biol. Chem., 1985, 260, 220–225.

    PubMed  Google Scholar 

  12. BRUCKNER, P., VAUGHN, L., WINTERHALTER, K.H. — Type IX collagen from sternal cartilage of chicken embryo contains covalently bound glycosaminoglycans. Proc. Natl. Acad. Sci. USA, 1985, 82, 2608–2612.

    Article  PubMed  CAS  Google Scholar 

  13. KONOMI, H., SEYER, J. M., NINOMIYA, Y., OLSEN, B. R. — Peptide-specific antibodies identify the a2 chain as the proteoglycan subunit of type IX collagen. J. Biol. Chem., 1986, 261, 6742–6746.

    PubMed  CAS  Google Scholar 

  14. MEYER, K. — Chemical structure of hyaluronic acid. Fed. Proc., 1958, 17, 1075 1077.

    Google Scholar 

  15. JEANLOZ, R.W. — Chemistry of mucopolysaccharides. In: Liebiecq C. (ed.), Proceedings 3rd International Congress Biochemistry, Brussels. New York: Academic Press, 1955, 55–72.

    Google Scholar 

  16. LAURENT, T. C. — Structure of hyaluronic acid. In: Balazs E. A. (ed.), Chemistry and molecular biology of the intercellular matrix. London: Academic Press, 1970, vol. 2, 703–732.

    Google Scholar 

  17. RODÉN, L. — Structure and metabolism of the proteoglycans of chondroitin sulfates and keratan sulfate. In: Balazs E. A. (ed.), Chemistry and molecular biology of the intercellular matrix. London: Academic Press, 1970, vol. 2, 797–821.

    Google Scholar 

  18. SHEEHAN, J., ATKINS, E., NIEDUSZYNSKI, I. — X-ray diffraction studies of the connective tissue polysaccharides. J. Mol. Biol., 1975, 91, 153–163.

    Article  PubMed  CAS  Google Scholar 

  19. SWANN, D.A. — On the state of hyaluronic acid in a connective tissue matrix. In: Balazs E. A. (ed.), Chemistry and molecular biology of the intercellular matrix. London: Academic Press, 1970, vol. 2, 743–748.

    Google Scholar 

  20. VARGA, L. — Studies on the hyaluronic acid prepared from the vitreous. J. Biol. Chem., 1955, 217, 651–658.

    PubMed  CAS  Google Scholar 

  21. CHAKRABARTI, B., HULTSCH, E. — Owl monkey vitreous: a novel model for hyaluronic acid structural studies. Biochem. Biophys. Res. Commun., 1976, 71, 1189 1193.

    Google Scholar 

  22. SWANN, D.A. — Studies on hyaluronic acid. I. The preparation and properties of rooster comb hyaluronic acid. Biochim. Biophys. Acta, 1968, 156, 17–30.

    Article  PubMed  CAS  Google Scholar 

  23. LAURENT, U. B.G., GRANATH, K. A. — The molecular weight of hyaluronate in the aqueous humour and vitreous body of rabbit and cattle eyes. Exp. Eye Res., 1983, 36, 481–492.

    Article  PubMed  CAS  Google Scholar 

  24. SWANN, D.A., SILVER, F.H., SOTMAN, S.L., HERMANN, H. — Measurements of reducing end groups on bovine vitreous-humour hyaluronic acid by reaction with [14C]cyanide. Biochem. J., 1982, 207, 409–414.

    PubMed  CAS  Google Scholar 

  25. MILLER, D., O’CONNOR, P., WILLIAMS, J. — Use of Na-hyaluronate during intraocular lens implantation in rabbits. Ophthalmic Surg., 1977, 8, 58–61.

    PubMed  CAS  Google Scholar 

  26. LAURENT, T.C., DAHL, I.M.S., DAHL, L.B., ENGSTROM-LAURENT, A., ERIKSSON, S., FRASER, R.E., GRANATH, K.A., LAURENT, C., LAURENT, U.B.G., LILJA, K., PERTOFT, H., SMEDSROD, B., TENGBLAD, A., WIK, O. — The catabolic fate of hyaluronic acid. Connect. Tissue Res., 1986, 15, 33–41.

    Article  PubMed  CAS  Google Scholar 

  27. LAURENT, U.B. G., LAURENT, T.C. — On the origin of hyaluronate in blood. Biochem. Int., 1981, 2, 195–199.

    CAS  Google Scholar 

  28. FRASER, J.R.E., LAURENT, T.C., PERTOFT, H., BAXTER, E. — Plasma clearance, tissue distribution and metabolism of hyaluronic acid injected intravenously in the rabbit. Biochem. J., 1981, 200, 415–424.

    PubMed  CAS  Google Scholar 

  29. FRASER, J.R.E., LAURENT, T.C., ENGSTROM-LAURENT, A., LAURENT, U.B. G. — Elimination of hyaluronic acid from the blood stream in the human. Clin. Exp. Pharmacol. Physiol., 1984, 11, 17–25.

    Article  PubMed  CAS  Google Scholar 

  30. ERIKSSON, S., FRASER, J. R. E., LAURENT, T.C., PERTOFT, H., SMEDSTOD, B. — Endothelial cells are a site of uptake and degradation of hyaluronic acid in liver. Exp. Cell. Res., 1983, 144, 223–228.

    Article  PubMed  CAS  Google Scholar 

  31. SMEDSROD, B., PERTOFT, H., ERIKSSON, S., FRASER, J.R.E., LAURENT, T.C. — Studies in vitro on the uptake of degradation of sodium hyaluronate in rat liver endothelial cells. Biochem. J., 1984, 223, 617–626.

    PubMed  CAS  Google Scholar 

  32. UNDERHILL, C.B., TOOLE, B.P. — Physical characteristics of hyaluronate binding to the surface of simian virus 40-transformed 3T3 cells. J. Biol. Chem., 1980, 255, 4544–4549.

    PubMed  CAS  Google Scholar 

  33. HAKANSSON, L., HALLGREN, R., VENGE, P. — Regulation of granulocyte function by hyaluronic acid: in vitro and in vivo effects on phagocytosis, locomotion and metabolism. J. Clin. Invest., 1980, 66, 298–305.

    Article  PubMed  CAS  Google Scholar 

  34. ANASTASSIADES, T., ROBERTSON, W. — Modulation of mitogen-dependent lymphocyte stimulation of hyaluronic acid. J. Rheumatol., 1984, 11, 729–734.

    PubMed  CAS  Google Scholar 

  35. CAMPBELL, R.D., LOVE, S.H., WHITEHEART, S.W., YOUNG, B., MYRVIK, O. N. — Increased hyaluronic acid is associated with dermal delayed-type hypersensitivity. Inflammation, 1982, 6, 235–244.

    Article  PubMed  CAS  Google Scholar 

  36. SHANNON, B. T., LOVE, S. H. — Additional evidence for the role of hyaluronic acid in the macrophage disappearance reaction. Immunol. Commun., 1980, 9, 735–746.

    PubMed  CAS  Google Scholar 

  37. HARDINGHAM, T., MUIR, H. — The specific interaction of hyaluronic acid with cartilage proteoglycans. Biochim. Biophys. Acta, 1972, 279, 401–405.

    Article  PubMed  CAS  Google Scholar 

  38. SWANN, D.A., POWELL, S., BROADHURST, J., SORDILLO, E., SOTMAN, S. — The formation of a stable complex between dissociated proteoglycan and hyaluronic acid in the absence of a link protein. Biochem. J., 1976, 157, 503–506.

    PubMed  CAS  Google Scholar 

  39. YAMADA, K.M., KENNEDY, D.W., KIMATA, K., PRATT, R.M. — Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J. Biol. Chem., 1980, 255, 6055–6063.

    PubMed  CAS  Google Scholar 

  40. OEGAMA, T. R., BROWN, M., DZIEWIATKOWSKI, D. — The link protein in proteoglycan aggregates from the Swarm rat chondrosarcoma. J. Biol. Chem., 1977, 252, 6470–6477.

    Google Scholar 

  41. DELPECH, B., HALAVENT, C. — Characterization and purification from human brain of a hyaluronic acid-binding glycoprotein, hyaluronectin. J. Neurochem., 1981, 36, 855–859.

    Article  Google Scholar 

  42. SILVER, F.H., SWANN, D.A. — Laser light scattering measurements on vitreous and rooster comb hyaluronate acids. Int. J. Macromol., 1982, 4, 425–429.

    Article  CAS  Google Scholar 

  43. ARMAND, G., BALAZS, E. A., MEYER, K., REYES, M. — Isolation and characterization of ichthyosan from tuna vitreous. Connect. Tissue Res., 1983, 11, 21–33.

    Article  PubMed  CAS  Google Scholar 

  44. SWANN, D.A., SOTMAN, S.L., GARG, H.G., HERMANN, H. — On the structure of bovine vitreous proteoglycans (PG). Invest. Ophthalmol. Vis. Sci., 1984, 25 (ARVO suppl.), 318.

    Google Scholar 

  45. KATAKAMI, C., APPEL, A., RAYMOND, L.A., LIPMAN, M.J., WINSTON, W.-Y. K. — Synthesis of chondroitin sulfate by fibrotic vitreous induced by monocytes and lymphocytes. Exp. Eye Res., 1985, 41, 509–518.

    Article  PubMed  CAS  Google Scholar 

  46. VAN-BOCKXMEER, F.M., MARTIN, C. E., CONSTABLE, I.J. — Iron-binding proteins in vitreous humour. Biochim. Biophys. Acta, 1983, 759, 17–23.

    Google Scholar 

  47. CHEN, C.H., CHEN, S.C. — Studies on soluble proteins of vitreous in experimental animals. Exp. Eye Res., 1981, 32, 381–388.

    Article  PubMed  CAS  Google Scholar 

  48. BEEBE, D.C., LATKER, C.H., JEBENS, H.A.H., JOHNSON, M. C., FEAGANS, D., FEINBERG, R.N. — Transport and steady-state concentration of plasma proteins in the vitreous humor of the chicken embryo: implications for the mechanism of eye growth during early development. Dev. Biol., 1986, 114, 361–368.

    Article  PubMed  CAS  Google Scholar 

  49. RAYMOND, L., JACOBSON, B. — Isolation and identification of stimulatory and inhibitory cell growth factors in bovine vitreous. Exp. Eye Res., 1982, 34, 267–286.

    Article  PubMed  CAS  Google Scholar 

  50. JACOBSON, B., SULLIVAN, D., RAYMOND, L., BASU, P.K., HASANY, S.M. — Further studies on a vitreous inhibitor of endothelial cell proliferation. Exp. Eye Res., 1983, 36, 447–450.

    Article  PubMed  CAS  Google Scholar 

  51. JACOBSON, B., BASU, P.K., HASANY, S.M. — Vascular endothelial cell growth inhibitor of normal and pathologic human vitreous. Arch. Ophthalmol., 1984, 102, 1543–1545.

    Article  PubMed  CAS  Google Scholar 

  52. BEEBE, D.C., FEAGANS, D.E., JEBENS, H.A. — Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc. Natl. Acad. Sci. USA, 1980, 77, 490–493.

    Article  PubMed  CAS  Google Scholar 

  53. CAMPOCHIARO, P.A., JORDAN, J.A., GLASER, B.M., CARDIN, A., MICHELS, R.-G. — Vitreous aspirates from patients with proliferative vitreoretinopathy stimulate retinal pigment epithelial cell migration. Arch. Ophthalmol., 1985, 103, 1403 1405.

    Google Scholar 

  54. HARPER, J., SCHUMACHER, B., EISENSTEIN, R., HARPER, E. — Inhibition of collagenase activity by extracts of bovine ocular tissues. Curr. Eye Res., 1985, 4, 803806.

    Google Scholar 

  55. TAYLOR, C.M., WEISS, J.B. — Partial purification of a 5.7 K glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem. Biophys. Res. Commun., 1985, 133, 911–916.

    Article  PubMed  CAS  Google Scholar 

  56. LUTTY, G.A., THOMPSON, D.C., GALLUP, J.Y., MELLO, R.J., PATZ, A., FENSELAU, A. — Vitreous: an inhibitor of retinal extract-induced neovascularization. Invest. Ophthalmol. Vis. Sci., 1983, 24, 52–56.

    PubMed  CAS  Google Scholar 

  57. HILL, C. R., KISSUN, R.D., WEISS, J.G., GARNER, A. — Angiogenic factor in vitreous from diabetic retinopathy. Experientia, 1983, 39, 583–585.

    Article  PubMed  CAS  Google Scholar 

  58. GRANT, M., RUSSELL, B., FITZGERALD, C., MERIMEE, T.J. — Insulin-like growth factors in vitreous: studies in control and diabetic subjects with neovascularization. Diabetes, 1986, 35, 416–420.

    Article  PubMed  CAS  Google Scholar 

  59. CHEN, S.C., CHEN, C.H. — Purification and characterization of two vascular endothelium effectors from fetal bovine retina, vitreous and serum. Exp. Eye Res., 1985, 41, 77–85.

    Article  PubMed  CAS  Google Scholar 

  60. CHEN, S.C., CHEN, C.H. — Vascular endothelial cell effectors in fetal calf retina, vitreous and serum. Invest. Ophthalmol. Vis. Sci., 1982, 23, 340–350.

    PubMed  CAS  Google Scholar 

  61. BETTELHEIM, F. A., WANG, T.J.Y. — Dynamic viscoelastic properties of bovine vitreous. Exp. Eye Res., 1976, 23, 435–441.

    Article  PubMed  CAS  Google Scholar 

  62. GREEN, W.R., KENYON, K.R., MICHELS, R. G., GILBERT, H.D., DE LA CRUZ, Z. — Ultrastructure of epiretinal membranes causing macular pucker after retinal attachment surgery. Trans. Ophthalmol. Soc. U.K., 1979, 99, 63–77.

    Google Scholar 

  63. FORRESTER, J. V., DOCHERTY, R., KERR, C., LACKIE, J.M. — Cellular proliferation in the vitreous: the use of vitreous explants as a model system. Invest. Ophthalmol. Vis. Sci., 1986, 27, 1085–1094.

    PubMed  CAS  Google Scholar 

  64. BELL, E., IVARSSON, B., MERRIL, C. — Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci USA, 1979, 76, 1274–1278.

    Article  PubMed  CAS  Google Scholar 

  65. EHRLICH, H.P., RAJARATNAM, J.B.M., GRISWOLD, T. R. — ATP-induced cell contraction in dermal fibroblasts: effect of cAMP and myosin light-chain kinase. J. Cell. Physiol., 1986, 12, 223–230.

    Article  Google Scholar 

  66. EHRLICH, H. P., BORLAND, K.M., MUFFLY, K. E., HALL, P.F. — Contraction of collagen lattice by peritubular cells from rat testis. J. Cell. Sci., 1986, 82, 281–294.

    PubMed  CAS  Google Scholar 

  67. EHRLICH, H.P., GRISWOLD, T.R., RAJARATNAM, J.B.M. — Studies on vascular smooth muscle cells and dermal fibroblasts in collagen matrices. Exp. Cell. Res., 1986, 164, 154–162.

    Article  PubMed  CAS  Google Scholar 

  68. MULLER-GLAUSER, W., HUMBEL, B., GLATT, M., STRAULI, P., WINTERHALTER, K.P. — On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J. Cell. Biol., 1986, 102, 1931–1939.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swann, D.A. (1987). Biochemistry of the Vitreous. In: Schepens, C.L., Neetens, A. (eds) The Vitreous and Vitreoretinal Interface. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1901-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1901-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1903-1

  • Online ISBN: 978-1-4757-1901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics