Skip to main content

A Simple Procedure for Establishing Ignition Conditions in Tokamaks

  • Chapter

Part of the book series: Ettore Majorana International Science Series ((EMISS))

Abstract

A method of establishing ignition conditions and plasma operating regimes over large regions of parameter space (R 0/a, b/a, aB 0 2/q, etc.) under various physics assumptions (χe, χi, q Ψ , β crit, n crit, etc.) using a simple global model is presented. Contour plots of ignition, supplementary power, and plasma heating and operating windows are generated. These are then used to analyze the potential physics design space, operating regimes, and plasma performance characteristics of small (R 0 ~ 1–2 m), high-field (B 0 ~ 8–13 T) tokamak ignition experiments.

Research sponsored by the Office of Fusion Energy, U.S. Department of Energy, under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Sheffield, “Options for an Ignited Tokamak,” Oak Ridge National Laboratory Report ORNL/TM-8924 (1984).

    Google Scholar 

  2. N. A. Uckan, J. Sheffield, W. A. Houlberg, and E. C. Selcow, “Physics Scaling Studies for Tokamak Ignition Experiments” (to be published).

    Google Scholar 

  3. N. A. Uckan, J. Sheffield, and E. C. Selcow, A Simple Contour Analysis of Ignition Conditions and Plasma Operating Regimes in Tokamaks, presented at the 11th Symposium on Fusion Engineering, Austin, Nov. 18–22, 1985 (proceedings to be published).

    Google Scholar 

  4. N. A. Uckan, W. A. Houlberg, and J. Sheffield, Physics Evaluation of Compact Tokamak Ignition Experiments, presented at the 11th Symposium on Fusion Engineering, Austin, Nov. 18–22, 1985 (proceedings to be published).

    Google Scholar 

  5. M. Murakami et al., Nucl. Fusion 16: 347 (1976).

    Article  Google Scholar 

  6. B. Coppi, “An Advanced Burning Core Experiment,” Massachusetts Institute of Technology R.L.E. Report PTP-84/17 (1984).

    Google Scholar 

  7. J. A. Schmidt et al., PPPL Ignition Studies Project, private communication, 1984–1985.

    Google Scholar 

  8. D. R. Cohn et al., MIT LITE Studies, private communication, 1984–1985.

    Google Scholar 

  9. W. A. Houlberg, private communication; see also W. A. Houlberg et al., Nucl. Fusion 22: 935 (1982).

    Google Scholar 

  10. R. D. Hazeltine, F. L. Hinton, and M. N. Rosenbluth, Phys. Fluids 16: 1645 (1973)

    Article  Google Scholar 

  11. B. Coppi and D. J. Sigmar, Phys. Fluids 16: 1174 (1973).

    Article  Google Scholar 

  12. B. Coppi, Comments Plasma Phys. Controlled Fusion 5: 261 (1980).

    Google Scholar 

  13. Y-K. M. Peng, “Spherical Torus, Compact Fusion at Low Field,” Oak Ridge National Lab. Report ORNL/FEDC-84/7 (1985).

    Google Scholar 

  14. F. Troyon et al., Plasma Phys. Controlled Fusion 26: 209 (1984).

    Article  Google Scholar 

  15. A. Sykes et al., paper B23 in: “Controlled Fusion and Plasma Physics (Proceedings of the 11th European Conference, Aachen, September 1983),” Part II, paper B23, 363 (1983).

    Google Scholar 

  16. C. S. Chang and F. L. Hinton, Phys. Fluids 25: 1493 (1982).

    Article  Google Scholar 

  17. R. J. Goldston, Plasma Phys. Controlled Fusion 26: 87 (1984).

    Article  Google Scholar 

  18. E. P. Gorbunov, S. V. Mirnov, and V. S. Strelkov, Nucl. Fusion 10:43 (1.970).

    Google Scholar 

  19. S. M. Kaye and R. J. Goldston, Nucl. Fusion 25: 65 (1985).

    Article  Google Scholar 

  20. J. G. Cordey et al., p. 89 in: “Physics of Plasmas in Thermonuclear Regimes (Proceedings of the Varenna Workshop, 1979),” CONF-790866, U.S. Department of Energy (1981).

    Google Scholar 

  21. J. Sheffield, “Tokamak Startup-Problems and Scenarios Related to the Transient Phases of Ignited Tokamak Operations,” presented at the Erice School on Tokamak Startup, Erice, Sicily, July 14–20, 1985; proceedings to be published.

    Google Scholar 

  22. U.S. Tokamak Ignition Studies Design Teams are located at Massachusetts Institute of Technology (IGNITOR-A, LITE), Oak Ridge National Laboratory, the Oak Ridge National Laboratory Fusion Engineering Design Center, Princeton Plasma Physics Laboratory, and TRW.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uckan, N.A., Sheffield, J. (1986). A Simple Procedure for Establishing Ignition Conditions in Tokamaks. In: Knoepfel, H. (eds) Tokamak Start-up. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1889-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1889-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1891-1

  • Online ISBN: 978-1-4757-1889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics