Skip to main content

Interaction between Lipids and the Intercellular Matrix of the Arterial Wall: Its Role in the Evolution of the Atherosclerotic Lesions

  • Chapter
Regression of Atherosclerotic Lesions

Abstract

The interaction between lipids and lipoproteins with the cells and the intercellular matrix of the arterial wall is an important factor in the genesis of atherosclerotic lesions. Lipoproteins of all classes present in variable quantities in circulating blood interact with cellular and macromolecular elements of the arterial wall.1, 2, 3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Robert, A. M. Robert, and B. Robert, Interaction entre lipids, lipoprotéines et macromolécules fibreuses du tissu conjonctif, Expos. Annu. Biochim. Med. 31: 111 (1972).

    Google Scholar 

  2. L. Robert and A. M. Robert, Elastin, elastase and arteriosclerosis, in: “Frontiers of Matrix Biology,” A. M. Robert and L. Robert, eds., S. Karger, Basel, Vol. 8, pp. 130–173 (1980).

    Google Scholar 

  3. D. M. Kramsch, C. Franzblau, and W. Hollander, Components of the protein-lipid complex of arterial elastin: their role in the retention of lipid in atherosclerotic lesions, in: “Arterial Mesenchyme and Arteriosclerosis,” W. D. Wagner and T. B. Clarkson, eds., Plenum Press, New York/London, pp. 193–210 (1973).

    Google Scholar 

  4. B. Jacotot and J. L. Beaumont, Dietary lipids and atherosclerosis, in: “Frontiers of Matrix Biology,” A. M. Robert and L. Robert, eds., S. Karger, Basel, Vol. 3, pp. 256–268 (1976).

    Google Scholar 

  5. H. Jellinek, Follow up of arterial mural transport in model experiments and the possiblities of influencing it, in: “State of Prevention and Therapy in Human Arteriosclerosis and in Animal Models,” W. H. Hauss, R. W. Wissler and R. Lehmann, eds., Westdeutscher Verlag, pp. 183–188 (1978).

    Google Scholar 

  6. M. S. Brown, P. T. Kovanen, and J. L. Goldstein, Regulation of plasma cholesterol by lipoprotein receptors, Science 212: 628 (1981).

    Article  Google Scholar 

  7. J. L. Goldstein and M. S. Brown, Lipoprotein receptors: genetic defense against atherosclerosis, Clin. Res. 30: 417 (1982).

    Google Scholar 

  8. M. S. Brown, R. G. W. Anderson, and J. L. Goldstein, Recycling receptors: the round-trip itinerary of migrant membrane proteins, Cell 32: 663 (1983).

    Article  Google Scholar 

  9. E. D. Hay, “Cell Biology of Extracellular Matrix,” Plenum Press, New York/London (1981).

    Google Scholar 

  10. B. Robert and L. Robert, Aging of connective tissues. General considerations, in: “Frontiers of Matrix Biology,” L. Robert, ed., S. Karger, Basel, Vol. 1, pp. 1–45 (1973).

    Google Scholar 

  11. L. Robert, Aging of connective tissue. Mech. Ageing Dev. 14: 273 (1980).

    Article  Google Scholar 

  12. E. A. Blazs, “Chemistry and Molecular Biology of the Intercellular Matrix,” Academic Press, London/New York, Vols. I-III (1970).

    Google Scholar 

  13. L. Robert, Structural glycoproteins of connective tissues, in: “Biochimie des Tissus Conjonctifs Normaux et Pathologiques,” A. M. Robert and L. Robert, eds., CNRS, Paris, N° 287, Vol. II, pp. 189–194 (1980).

    Google Scholar 

  14. L. Robert, “Mécanismes Cellulaires el Moléculaires du Vieillissement,” Masson, Paris (1983).

    Google Scholar 

  15. M. Moczar and L. Robert, Action of human hyperlipemic sera on the biosynthesis of intercellular matrix macromolecules in aorta organ cultures. Paroi Artérielle III: 105 (1976).

    Google Scholar 

  16. M. Bihari-Varga, J. Gergely, and S. Gero, Further investigations on complex formation in vitro between aortic mucopolysaccharides and β-lipoproteins, J. Atheroscler. Res. 4: 106 (1964).

    Article  Google Scholar 

  17. C. W. M. Adams and O. B. Bayliss, Acid mucosubstances underlying lipid deposits in ageing tendons and atherosclerotic arteries, Atherosclerosis 18: 191 (1973).

    Article  Google Scholar 

  18. E. M. Avila, F. Lopez, and G. Camejo, Properties of low density lipoprotein related to its interaction with arterial wall components: in vitro and in vivo studies, Artery 4: 36 (1978).

    Google Scholar 

  19. D. M. Kramsch and W. Hollander, Interaction of serum and arterial lipoproteins with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaques, J. Clin. Invest. 52: 236 (1973).

    Article  Google Scholar 

  20. M. Szigeti, G. Monnier, B. Jacotot, and L. Robert, Distribution of ingested 14C-cholesterol in the macromolecular fractions of rat connective tissues, Connect. Tissue Res. 1: 145 (1972).

    Article  Google Scholar 

  21. B. Jacotot, J. L. Beaumont, G. Monnier, M. Szigeti, B. Robert, and L. Robert, Role of elastic tissue in cholesterol deposition in the arterial wall, Nutr. Metabol. 15: 46 (1973).

    Article  Google Scholar 

  22. M. Claire, B. Jacotot, and L. Robert, Characterization of lipids associated with macromolecules of the intercellular matrix of human aorta, Connect. Tissue Res. 4: 61 (1976).

    Article  Google Scholar 

  23. J. Chaudière, J. C. Derouette, F. Mendy, B. Jacotot, and L. Robert, In vitro preparation of elastin-triglyceride-complexes. Fatty acid uptake and modification of the susceptibility to elastase action, Atherosclerosis 36: 183 (1980).

    Article  Google Scholar 

  24. W. Hornebeck and S. M. Partridge, Conformation changes in fibrous elastin due to calcium ions, Eur. J. Biochem. 51: 73 (1975).

    Article  Google Scholar 

  25. M. P. Jacob, W. Hornebeck, and L. Robert, Studies on the interaction of cholesterol with soluble and insoluble elastins, Int. J. Biol. Macromol. 5: 275 (1983).

    Article  Google Scholar 

  26. C. W. M. Adams, “Vascular Histochemistry,” Lloyd-Luke Ltd., London (1967).

    Google Scholar 

  27. E. Heikkinen, Ageing of interstititial collagen, in: “Frontiers of Matrix Biology,” L. Robert, ed., S. Karger, Basel, Vol. 1, pp. 107–129 (1973).

    Google Scholar 

  28. J. M. Bowness, Atherosclerosis 31: 403 (1978).

    Article  Google Scholar 

  29. J. Labat-Robert, Structural glycoproteins of connective tissue, in: “Connective Tissue Research: Chemistry, Biology and Physiology,” Z. Deyl and A. Adams, eds., Alan Liss Inc., New York, pp. 233–246 (1981).

    Google Scholar 

  30. L. Robert and A. M. Robert, Elastin, elastase and arteriosclerosis, in: “Frontiers of Matrix Biology,” L. Robert, ed., S. Karger, Basel, Vol. 8, pp. 130–173 (1980).

    Google Scholar 

  31. K. W. Walton, Studies on the pathogenesis of corneal arcus formation. I. The human corneal arcus and its relation to atherosclerosis as studied by immunofluorescence, J. Pathol. 111: 263 (1973).

    Article  Google Scholar 

  32. E. B. Smith, H. S. Dietz, and I. B. Craig, Characterization of free and tightly bound lipoprotein in intima by thin layer isoelectric focusing, Atherosclerosis 33: 329 (1979).

    Article  Google Scholar 

  33. J. Chaudiere, G. Godeau, J. P. Potazman, B. Jacotot, and L. Robert, Effect of different vegetable oil diets on the development and regression of cholesterol induced atherosclerosis in the rabbit, Atherosclerosis (submitted manuscript).

    Google Scholar 

  34. J. Chaudière, J. P. Potazman, L. Robert, and B. Jacotot, Effect of different vegetable oil diets on the composition of aorta lipids, Atherosclerosis (submitted manuscript).

    Google Scholar 

  35. D. G. Cornwell and N. Morisaki, Fatty acid paradoxes in the control of cell proliferation: prostaglandins, lipid peroxides and co-oxidation reactions, in: “Free Radicals in Biology,” W. A. Pryor, eds., Vol. VI (in press).

    Google Scholar 

  36. K. M. Schaich and M. Karel, Free radical reactions of peroxidizing lipids with amino acids and proteins: an ESR study, Lipids 11: 392 (1976).

    Article  Google Scholar 

  37. H. Nielsen, Reaction between peroxidized phospholipid and protein: I. Covalent binding of peroxidized cardiolipin to albumin, Lipids 13: 253 (1978).

    Article  Google Scholar 

  38. F. Sundholm, A. Visapää, and J. Bjorksten, Cross linking of collagen in the presence of oxidizing lipid, Lipids 13: 755 (1978).

    Article  Google Scholar 

  39. H. Bouissou, M. T. Pieraggi, M. Julian, and L. Douste-Blazy, Cutaneous aging. Its relation with arteriosclerosis and atheroma, in: “Frontiers of Matrix Biology,” L. Robert, ed., S. Karger, Basel, Vol. 1, pp. 190–211 (1973).

    Google Scholar 

  40. H. Bouissou, M. T. Pieraggi, M. Julian, and L. Douste-Blazy, Simultaneous degradation of elastin in dermis and in aorta, in: “Frontiers of Matrix Biology,” L. Robert, ed., S. Karger, Basel, Vol. 3, pp. 242–255 (1976).

    Google Scholar 

  41. H. Bouissou, M. T. Pieraggi, M. Julian, I. Buscail, L. Douste-Blazy, E. Latorre, and J. P. Charlet, Identifying arteriosclerosis and aortic atheromatosis by skin biopsy, Atherosclerosis 19: 449 (1974).

    Article  Google Scholar 

  42. H. Bouissou, J. de Graeve, J. C. Thiers, M. L. Solera, and P. Valdiguie, Cutaneous cholesterol and plasma lipoproteins in young subjects, Biomedicine 31: 236 (1979).

    Google Scholar 

  43. H. Bouissou, J. de Graeve, J. C. Thiers, M. L. Solera, J. C. Cazard, and J. Montagut, Cutaneous cholesterol and plasma lipoproteins in elderly active and bedridden patients compared with young adults, Gerontology 27: 94 (1981).

    Article  Google Scholar 

  44. H. Bouissou, J. de Graeve, C. Legendre, M. L. Solera, E. Wulfert, and J. C. Thiers, Skin cholesterol and skin apoprotein B in atherosclerosis, Biomedicine 36: 159 (1982).

    Google Scholar 

  45. J. Chamley-Campbell, G. R. Campbell, and R. Ross, Physiol. Rev. 59: 1 (1979).

    Google Scholar 

  46. M. F. Crass and C. D. Barnes, “Vascular Smooth Muscle: Metabolic, Ionic, and Contractile Mechanisms,” Academic Press, New York/London (1982).

    Google Scholar 

  47. J. P. Mauger, M. Worcel, J. Tassin, and Y. Courtois, Contractility of smooth muscle cells of rabbit aorta in tissue culture, Nature 255: 337 (1975).

    Article  Google Scholar 

  48. W. Hornebeck, D. Brechemier, J. M. Soleilhac, M. C. Bourdillon, and L. Robert, Characterization of rat aorta smooth muscle cells elastase activity, J. Biol. Chem. (submitted manuscript).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robert, L., Chaudiere, J., Jacotot, B. (1984). Interaction between Lipids and the Intercellular Matrix of the Arterial Wall: Its Role in the Evolution of the Atherosclerotic Lesions. In: Malinow, M.R., Blaton, V.H. (eds) Regression of Atherosclerotic Lesions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1773-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1773-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1775-4

  • Online ISBN: 978-1-4757-1773-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics