Skip to main content

Rainbow Scattering in Inelastic Molecular Collisions

  • Chapter
Potential Energy Surfaces and Dynamics Calculations

Abstract

The role of rainbow scattering in elastic collisions of atoms and atomic ions is well known1,2 and provides an important link between experimental observation and the theoretical potential energy curve which governs the dynamics of the colliding atoms. Only recently, however, has the analogous phenomenon in the case of non-spherical potentials and inelastic collisions been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Bernstein, Quantum effects in elastic molecular scattering, Advan. Chem. Phys. 10: 75 (1966).

    Article  Google Scholar 

  2. U. Buck, Elastic scattering, Advan. Chem. Phys. 30: 313 (1975).

    Article  CAS  Google Scholar 

  3. W. Eastes, U. Ross, and J. P. Toennies, Experimental observation of structure in the distribution of final rotational states in small angle inelastic scattering of Li+ from CO (Ec.m. = 4–7 eV), Chem. Phys. 39: 407 (1979).

    Article  CAS  Google Scholar 

  4. W. Schepper, U. Ross, and D. Beck, Anisotropy of the repulsive intermolecular potential from rotationally inelastic scattering, Z. Phys. A 290: 131 (1979).

    Article  CAS  Google Scholar 

  5. D. Beck, U. Ross, and W. Schepper, Isotope shift in the bulge effect of molecular scattering, Phys. Rev. A 19: 2173 (1979).

    Article  CAS  Google Scholar 

  6. K. Bergmann, R. Engelhardt, U. Hefter, and J. Witt, State-to-state differential cross sections for rotational transitions in Na2 + He collisions, J. Chem. Phys. 71: 2726 (1979).

    Article  CAS  Google Scholar 

  7. K. Bergmann, U. Hefter, and J. Witt, State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He, J. Chem. Phys. 72: 4777 (1980).

    Article  CAS  Google Scholar 

  8. K. Bergmann, U. Hefter, A. Mattheus, and J. Witt, Resolution of angular rotational rainbows in Na2-Ne collisions, preprint (March, 1980).

    Google Scholar 

  9. J. A. Serri, A. Morales, W. Moskowitz, D. E. Pritchard, C. H. Becker, and J. L. Kinsey, Observation of halos in rotationally inelastic scattering of Na2 from Ar, J. Chem. Phys. 72: 6304 (1980).

    Article  CAS  Google Scholar 

  10. L. D. Thomas, Classical trajectory study of differential cross sections for Li+-CO and N2 inelastic collisions, J. Chem. Phys. 67: 5224 (1977).

    Article  CAS  Google Scholar 

  11. L. D. Thomas, W. P. Kraemer, G. H. F. Diercksen, and P. McGuire, Comparison of classical mechanics and the coupled states approximation for Li+-CO scattering on an Ab initio calculated CI potential energy surface, Chem. Phys. 27: 237 (1978).

    Article  CAS  Google Scholar 

  12. L. D. Thomas, Solution of the coupled equations of inelastic atom-molecule scattering for a single initial state, J. Chem. Phys. 70: 2979 (1979).

    Article  CAS  Google Scholar 

  13. L. D. Thomas, W. P. Kraemer, and G, F. H. Diercksen, Low angle scattering of Li+ by CO, Chem. Phys. Lett. 74: 445 (1980).

    Article  CAS  Google Scholar 

  14. L. D. Thomas, On rainbow scattering in inelastic molecular collisions, J. Chem. Phys. 73: 5905 (1980).

    Article  CAS  Google Scholar 

  15. D. Beck, U. Ross, and W. Schepper, Rotationally inelastic classical scattering from an anisotropic rigid shell potential of rotation symmetry, Z. Phys. A 293: 107 (1979).

    Article  CAS  Google Scholar 

  16. R. Schinke, Theoretical studies of vib-rotational excitation of Li+-H2 collisions at intermediate energies, Chem. Phys. 34: 65 (1978).

    Article  CAS  Google Scholar 

  17. R. Schinke and P. McGuire, Rotational rainbow oscillations in He-Na2 collisions: Comparison between coupled states and infinite order sudden approximations, J. Chem. Phys. 71: 4201 (1979).

    Article  CAS  Google Scholar 

  18. R. Schinke, Quantum effects in rotationally inelastic molecular scattering: K + N2 and K + CO collisions on simple model surfaces, J. Chem. Phys. 72: 1120 (1980).

    Article  CAS  Google Scholar 

  19. R. Schinke, Rotational rainbow maxima: A time dependent study, Chem. Phys. 47: 287 (1980).

    Article  CAS  Google Scholar 

  20. H. J. Korsch and R. Schinke, A uniform semiclassical sudden approximation for rotationally inelastic scattering, J. Chem. Phys. 73: 1222 (1980).

    Article  CAS  Google Scholar 

  21. R. Schinke, Inversion of rotationally inelastic differential cross sections under sudden conditions, J. Chem. Phys. 73: 6117 (1980).

    Article  CAS  Google Scholar 

  22. R. Schinke, W. Müller, W. Meyer, and P. McGuire, Theoretical investigation of rotational rainbow structures in X-Na2 collisions using CI potential surfaces. I. Rigid-rotor X=He scattering and comparison with state-to-state experiments, J. Chem. Phys., submitted for publication.

    Google Scholar 

  23. J. M. Bowman, Rotational rainbows in inelastic atom-molecule differential cross sections, Chem. Phys. Lett. 62: 309 (1979).

    Article  CAS  Google Scholar 

  24. C. B. Boyer, “The Rainbow from Myth to Mathematics”, Thomas Yoseloff, New York (1959).

    Google Scholar 

  25. L. W. Taylor, “Physics: The Pioneer Science”, Houghton Mifflin Co., The Riverside Press, Cambridge (1941), pp. 498–503.

    Google Scholar 

  26. Descartes, “Les Meteores” (1637), see English translation in: W. F. Magie, “A Source Book in Physics”, McGraw-Hill, New York (1935), p. 273.

    Google Scholar 

  27. Reference 25, p. 406.

    Google Scholar 

  28. I. Newton, “Opticks: Or a Treatise of the Reflections, Refractions, Inflections and Colours of Light”, 3rd ed., London (1721), p. 147.

    Google Scholar 

  29. G. B. Airy, On the intensity of light in the neighborhood of a caustic, Trans. Camb. Phil. Soc. 6: 379 (1838).

    Google Scholar 

  30. A. Sommerfeld, “Optics”, Academic, New York (1954), p. 352.

    Google Scholar 

  31. R. Mecke, Andere Fälle von Beugung, Chapter 3 in: “Handbuch der Physik”, Vol. 20, H. Konen, ed., Springer, Berlin (1928), p. 67.

    Google Scholar 

  32. H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, MA (1950), p. 82.

    Google Scholar 

  33. K. W. Ford and J. A. Wheeler, Semiclassical description of scattering, Ann. Phys. 7: 259 (1959).

    Article  Google Scholar 

  34. F. A. Morse, R. B. Bernstein, and H. U. Hostettler, Evaluation of the intermolecular potential well depth from observations of rainbow scattering: Cs-Hg and K-Hg, J. Chem. Phys. 36: 1947 (1962).

    Article  CAS  Google Scholar 

  35. U. Buck and H. Pauly, Determination of intermolecular potentials by the inversion of molecular beam scattering data. II. High resolution measurements of differential scattering cross sections and the inversion of the data for Na-Hg, J. Chem. Phys. 54: 1929 (1971).

    Article  CAS  Google Scholar 

  36. W. H. Miller, The classical S-matrix in molecular collisions, Advan. Chem. Phys. 30: 77 (1975).

    Article  CAS  Google Scholar 

  37. W. H. Miller, Semiclassical theory of atom-diatom collisions: Path integrals and the classical S matrix, J. Chem. Phys. 53: 1949 (1970).

    Article  CAS  Google Scholar 

  38. J. N. L. Connor and R. A. Marcus, Theory of semiclassical transition probabilities for inelastic and reactive collisions. II. Asymptotic evaluation of the S matrix, J. Chem. Phys. 55: 5636 (1971).

    Article  CAS  Google Scholar 

  39. W. R. Gentry, Ion-dipole scattering in classical perturbation theory, J. Chem. Phys. 60: 2547 (1974).

    Article  CAS  Google Scholar 

  40. R. Böttner, U. Ross, and J. P. Toennies, Measurements of rotational and vibrational quantum transition probabilities in the scattering of Li+ from N2 and CO at center of mass energies of 4.23 and 7.07 eV, J. Chem. Phys. 65: 733 (1976).

    Article  Google Scholar 

  41. L. D. Thomas, The calculation of classical transition probabilities in atom-molecule collisions for fixed total angular momentum, Chem. Phys. Lett. 51: 35 (1977).

    Article  CAS  Google Scholar 

  42. L. D. Thomas, W. P. Kraemer, and G. H. F. Diercksen, Classical trajectory study on an Ab initio CI vibrotor potential energy surface for Li-CO differential cross sections, Chem. Phys. 30: 33 (1978).

    Article  CAS  Google Scholar 

  43. R. J. Cross, Jr., Classical small-angle scattering from anisotropic potentials, J. Chem. Phys. 46: 609 (1967).

    Article  CAS  Google Scholar 

  44. R. M. Harris and J. F. Wilson, Optical model analysis of non-reactive collisions of reactive molecules: Scattering of K, Rb, and Cs from CCl4, CH3I, and SnCl4, J. Chem. Phys. 54: 2088 (1971).

    Article  CAS  Google Scholar 

  45. U. Buck and V. Khare, A comparison of different sudden approximations for molecular scattering, Chem. Phys. 26: 215 (1977).

    Article  CAS  Google Scholar 

  46. F. E. Budenholzer and E. A. Gislason, Classical differential cross sections for anisotropic potentials, J. Chem. Phys. 68: 4222 (1978).

    Article  CAS  Google Scholar 

  47. U. Buck, F. Gestermann, and H. Pauly, Double rainbows in atom-molecule scattering, Chem. Phys. Lett. 33: 186 (1975).

    Article  CAS  Google Scholar 

  48. P. McGuire and D. J. Kouri, Quantum mechanical close coupling approach to molecular collisions. jz-conserving coupled states approximation, J. Chem. Phys. 60: 2488 (1974).

    Article  CAS  Google Scholar 

  49. R. T Pack, Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering. Sudden approximations, J. Chem. Phys. 60: 633 (1974).

    Article  CAS  Google Scholar 

  50. G. E. Zahr and L. D. Thomas, Semiclassical calculation of rotational rainbows in coplanar Li+-CO collisions, to be published.

    Google Scholar 

  51. R. Goldflam, S. Green, and D. J. Kouri, Infinite order sudden approximation for rotational energy transfer in gaseous mixtures, J. Chem. Phys. 67: 4149 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, L.D. (1981). Rainbow Scattering in Inelastic Molecular Collisions. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics