Skip to main content

Genes and Membranes

  • Chapter
  • 63 Accesses

Abstract

It is now generally accepted that the composition of biological membranes is under genetic control. For each membrane protein, each enzyme involved in the biosynthesis of membrane lipids, and each enzyme that modifies either proteins or lipids (e.g., by adding carbohydrate residues to make glycoproteins or glycolipids), there must be a structural gene whose nucleotide sequence specifies the appropriate amino acid sequence. In addition, there are assumed to be regulatory genes which govern the rates at which the various proteins are made. The purpose of this chapter is to survey the ways in which genetic studies can contribute to our understanding of membrane structure and function. Successive sections of the chapter will discuss the criteria for establishing that differences in membrane properties are genetically determined, the kinds of information that can come from biochemical and physiological studies on membrane mutants, and the information that can be gained by genetic analysis. First, however, it will be important to define the various mutational events that can occur, and the effects of each on the structure or rate of synthesis of the corresponding protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, M., and J. D. Battle, Jr. 1952. A genetic study in hereditary spherocytosis. Am. J. Hum. Genet. 4: 350–355.

    CAS  PubMed  Google Scholar 

  2. Adler, J., and W. Epstein. 1974. Phosphotransferasesystem enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 71: 2895–2899.

    Article  CAS  PubMed  Google Scholar 

  3. Adler, J., G. L. Hazelbauer, and M. M. Dahl. 1973. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115: 824–847.

    CAS  Google Scholar 

  4. Aksamit, R., and D. E. Koshland, Jr. 1972. A ribose binding protein of Salmonella typhimurium. Biochem. Biophys. Res. Commun. 48: 1348–1353.

    Article  CAS  Google Scholar 

  5. Ames, G. F. 1964. Uptake of amino acids by Salmonella typhimurium. Arch. Biochem. Biophys. 104: 1–18.

    Article  CAS  Google Scholar 

  6. Ames, G. F., and J. Lever. 1970. Components of histidine transport: Histidine-binding proteins and hisP protein. Proc. Natl. Acad. Sci. U.S.A. 66: 1096–1103.

    Article  CAS  PubMed  Google Scholar 

  7. Ames, G. F., and J. Lever. 1972. The histidine-binding protein J is a component of histidine transport: Identification of its structural gene hisJ. J. Biol. Chem. 247: 4309–4316.

    CAS  Google Scholar 

  8. Baker, R. M., D. M. Brunette, R. Mankovitz, L. H. Thompson, G. F. Whitmore, L. Simonovitch, and J. E. Till. 1974. Ouabain-resistant mutants of mouse and hamster cells in culture. Cell 1: 9–21.

    Article  Google Scholar 

  9. Beckwith, J. R., and D. Zipser, eds. 1970. The Lactose Operon. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  10. Boos, W. 1972. Structurally defective galactose-binding protein isolated from a mutant negative in the ßmethylgalactoside transport System of Escherichia coli J. Biol. Chem. 247: 5414–5424.

    CAS  Google Scholar 

  11. Boos, W. 1974. Pro and contra carrier proteins; sugar transport via the periplasmic galactose-binding protein. In: Current Topics in Membranes and Transport, Vol. 5. F. Bronner and A. Kleinzeller, eds. Academic Press. New York. pp. 51–136.

    Google Scholar 

  12. Chasin, L. A. 1973. The effect of ploidy on chemical mutagenesis in cultured Chinese hamster cells. J. Cell. Physiol. 82: 299–308.

    Article  CAS  PubMed  Google Scholar 

  13. Dunham, P. B., and J. F. Hoffman. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J. Gen. Physiol. 58: 94–116.

    Article  CAS  PubMed  Google Scholar 

  14. Elsas, L. J., R. E. Hillman, J. H. Patterson, and L. E. Rosenberg. 1970. Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J. Clin. Invest. 49: 576–585.

    Article  CAS  PubMed  Google Scholar 

  15. Ephrussi. B. 1972. Hybridization of Somatic Cells. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  16. Fox, C. F., J. R. Carter, and E. P. Kennedy. 1967. Genetic control of the membrane protein component of the lactose transport system of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 57: 698–705.

    Article  CAS  Google Scholar 

  17. Fox, C. F., and E. P. Kennedy. 1965. Specific labelling and partial purification of the M protein, a component of the ß-galactoside transport system of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 54: 891–899.

    Article  CAS  Google Scholar 

  18. Harris, H. 1970. Cell Fusion. Oxford Univ. Press ( Clarendon ), London.

    Google Scholar 

  19. Hazelbauer, G. L., and J. Adler. 1971. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature (New Biol.) 230: 101–104.

    CAS  Google Scholar 

  20. Hoffman, P. G., and D. C. Tosteson. 1971. Active sodium and potassium transport in high potassium and low potassium sheep red cells. J. Gen. Physiol. 58: 438–466.

    Article  CAS  PubMed  Google Scholar 

  21. Jacob, F., D. Perrin, C. Sanchez, and J. Monod. 1960. L’opéron: Groupe de gènes à expression coordonée par un opérateur. C. R. Acad. Sci. 250: 1727–1729.

    CAS  Google Scholar 

  22. Jones, T. H. D., and E. P. Kennedy. 1969. Characterization of the membrane protein component of the lactose transport system of Escherichia coli. J. Biol. Chem. 244: 5981–5987.

    CAS  Google Scholar 

  23. Kennedy, E. P. 1970. The lactose permease system of Escherichia coli. In: The Lactose Operon. J. R. Beckwith and D. Zipser, eds. Cold Spring Harbor Laboratory, New York. pp. 49–82.

    Google Scholar 

  24. Kennedy, E. P., M. K. Rumley, and J. B. Armstrong. 1974. Direct measurement of the binding of labeled sugars to the lactose permease M protein. J. Biol. Chem. 249: 33–37.

    CAS  PubMed  Google Scholar 

  25. Kung, C., S.-Y. Chang, Y. Satow. J. Van Houten, and H. Hansma. 1975. Genetic dissection of behavior in Paramecium. Science 188: 898–904.

    CAS  Google Scholar 

  26. Kustu, S. G., and G. F. Ames. 1974. The histidine-binding protein J, a histidine transport component, has two different functional sites. J. Biol. Chem. 249: 69766983.

    Google Scholar 

  27. Lever, J. E. 1972. Purification and properties of a component of histidine transport in Salmonella typhimurium: The histidine-binding protein J. J. Biol. Chem. 247: 4317–4326.

    CAS  Google Scholar 

  28. Mankovitz, R., M. Buchwald, and R. M. Baker. 1974. Isolation of ouabain-resistant human diploid fibroblasts. Cell 3: 221–226.

    Article  CAS  PubMed  Google Scholar 

  29. Mezger-Freed, L. 1971. Puromycin-resistance in haploid and heteroploid frog cells: Gene or membrane determined? J. Cell Biol. 51: 742–751.

    Article  CAS  PubMed  Google Scholar 

  30. Ordal, G. W., and J. Adler. 1974. Isolation and complementation of mutants in galactose taxis and transport. J. Bacteriol. 117: 509–516.

    CAS  PubMed  Google Scholar 

  31. Orda!, G. W., and J. Adler. 1974. Properties of mutants in galactose taxis and transport. J. Bacteriol. 117: 517526.

    Google Scholar 

  32. Rosenberg, L. E., and C. R. Scriver. 1974. Disorders of amino acid metabolism. In: Duncan’s Diseases of Metabolism, 7th ed. P. K. Bondy and L. E. Rosenberg, eds. Saunders, Philadelphia, Pennsylvania. pp. 465–654.

    Google Scholar 

  33. Slayman, C. W. 1973. The genetic control of membrane transport. In: Current Topics in Membranes and Transport, Vol. 4. F. Bronner and A. Kleinzeller, eds. Academic Press, New York. pp. 1–174.

    Google Scholar 

  34. Stanley, P., V. Caillibot, and L. Simonovitch. 1975. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somatic Cell Genet. 1: 3–26.

    Article  CAS  PubMed  Google Scholar 

  35. Stanley, P., S. Narasimhan, L. Siminovitch, H. Schacter. 1975. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine-glycoprotein N-acetylglucosaminyl transferase activity. Proc. Natl. Acad. Sci. U.S.A. 72: 3323–3327.

    Article  CAS  PubMed  Google Scholar 

  36. Till, J. E., R. M. Baker, D. M. Brunette, V. Ling, L. H. Thompson, and J. A. Wright. 1973. Genetic regulation of membrane function in mammalian cells in culture. Fed. Proc. 32: 29–33.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adelberg, E.A., Slayman, C.W. (1980). Genes and Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1718-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1718-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1720-4

  • Online ISBN: 978-1-4757-1718-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics