Skip to main content

Radiative Energy Transfer in Circuit Breaker Arcs

  • Chapter

Part of the book series: Earlier Brown Boveri Symposia ((EBBS))

Summary

Computer studies have revealed that in high-current gast-blast arcs, energy losses at the arc centre are dominated by the radiation losses so that the arc is approximately isothermal. However, most of this radiation is in the far ultra violet region of the spectrum and is re-absorbed in the outer cold region of the arc. Thus, the electrical energy is largely expended in producing arc plasma rather than lost as radiation. Formulae which result for arc diameter as a function of current are in reasonable agreement with experiment. The model for radiation transfer provides a mathematical foundation for the Cassie arc model that for high-current gas-blast arcs the arc diameter is approximately proportional to the square root of the current and arc voltage and temperature are largely independent of current.

Radiation processes are also of primary importance in determining the onset of dielectric breakdown. Recent theoretical investigations have verified that in the breakdown process a conducting channel is propagated by space charge and radiation effects of exp(αd) ~ 108 where α is Townsends ionization coefficient and d is the transit distance of an avalanche. Furthermore, absorption of radiation from the arc before current zero will produce an outer mantel of hot gas which will not rapidly cool by conduction because of its large radius. Because α/n increases rapidly with E/n, breakdown voltages are significantly reduced by any warm gas remaining in the inter electrode region after current zero; n is gas number density, E the electric field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Sampson, Radiative contributions to energy and momentum transport in a gas, p. 25, Interscience, New York (1965)

    Google Scholar 

  2. J. B. Shumaker, JQSRT 14 (1974) 19

    Article  Google Scholar 

  3. L. H. Aller, Astrophysics, p. 223, Ronald Press, New York (1963)

    Google Scholar 

  4. H. R. Griem, Plasma Spectroscopy, McGraw Hill, New York, 1964

    Google Scholar 

  5. A. Burgess and M. J. Seaton, Mon. Not. Roy. Astr. Soc. 120 (1960) 121

    MathSciNet  MATH  Google Scholar 

  6. G. Peach, Memoirs R. Astron. Soc. 71 (1967) 13

    Google Scholar 

  7. J. J. Lowke and R. W. Liebermann, J. Appl. Phys. 42 (1971) 3532

    Article  Google Scholar 

  8. K. H. Wilson and W. E. Nicolet, JQSRT 7 (1967) 891

    Article  Google Scholar 

  9. J. J. Lowke and R. W. Liebermann, J. Appl. Phys. 43 (1971) 1991

    Google Scholar 

  10. H. Popp, Z. Naturforsch. 22a (1967) 254

    Google Scholar 

  11. H. Popp, Physics Reports 16 (1975) 169

    Article  Google Scholar 

  12. G. Bold, Z. Phys. 154 (1959) 319 and 154 (1959) 330

    Google Scholar 

  13. J. C. Morris, R. U. Krey and R. L. Garrison, Phys. Rev. 180 (1969) 167

    Article  Google Scholar 

  14. W. D. Barfield, JQSRT 17 (1977) 471

    Article  Google Scholar 

  15. W. Hermann and E. Schade, JQSRT 12 (1972) 1257

    Article  Google Scholar 

  16. R. W. Liebermann and J. J. Lowke, JQSRT 16 (1976) 253

    Article  Google Scholar 

  17. W. L. Wiese, M. W. Smith and B. M. Miles, Atomic Transition Probabilities, NBS NSRDS-NBS, 22, Vol. 2 and NSRDS-NBS, 4, Vol. 1

    Google Scholar 

  18. H. R. Griem, Phys. Rev. 128 (1962) 515

    Article  Google Scholar 

  19. L. C. Biedenharn, J. M. Blatt and M. E. Rose, Rev. Mod. Phys. 24 (1952) 249

    Article  MATH  Google Scholar 

  20. B. L. Hunt and M. Sibulkin, JQSRT 7 (1967) 761

    Article  Google Scholar 

  21. H. R. Griem, Phys. Rev. 165 (1968) 258

    Article  Google Scholar 

  22. C. H. Church, R. G. Schlecht, I. Liberman and B. W. Swanson, AIAA 4 (1966) 1947

    Article  Google Scholar 

  23. J. J. Lowke, JQSRT 9 (1969) 839

    Article  Google Scholar 

  24. R. D. Richtmyer and K. W. Morton, Difference methods for initial valve problems, Interscience, New York (1967)

    Google Scholar 

  25. J. J. Lowke and E. R. Capriott, JQSRT 9 (1969) 207

    Article  Google Scholar 

  26. W. Finkelnburg and H. Maecker, Handbuch der Physik, Vol. 22, p. 254 (Edited by S. Flügge ), Springer Verlag, Berlin (1956)

    Google Scholar 

  27. R. Viskanta, Advances in Heat Transfer, Vol. 3, p. 175, Edited by T. F. Irvine and J. P. Hartnett, Academic Press, New York, 1966

    Google Scholar 

  28. A. Schuster, Astrophys. J. 21 (1905) 1

    Article  Google Scholar 

  29. S. C. Traugott and K. C. Wang, Int. J. Heat Mass Transfer 7 (1964) 269

    Article  Google Scholar 

  30. C. F. Curtiss and J. 0. Hirschfelder, Proc. Natn. Acad. Sci. USA 38 (1952) 235

    Article  MathSciNet  MATH  Google Scholar 

  31. M. F. Hoyaux, Arc Physics, Springer Verlag, New York (1968)

    Book  Google Scholar 

  32. H. W. Emmons, Phys. Fluids 10 (1967) 1125

    Google Scholar 

  33. J. J. Lowke, JQSRT 14 (1974) 111

    Article  Google Scholar 

  34. W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller and E. Schade, J. Phys. D 7 (1974) 1703, also IEEE Trans. PAS 95 (1976) 1165

    Google Scholar 

  35. D. T. Tuma and J. J. Lowke, J. Appl. Phys. 46 (1975) 3361, also J. J. Lowke and H. C. Ludwig, J. Appl. Phys 46 (1975) 3352

    Google Scholar 

  36. W. Hermann, U. Kogelschatz, K. Ragaller and E. Schade, J. Phys. D 7 (1974) 607

    Article  Google Scholar 

  37. J. J. Lowke, J. Appl. Phys. 41 (1970) 2588

    Google Scholar 

  38. D. R. Airey, R. E. Kinsinger, P. H. Richards and J. D. Swift, IEEE Trans. PAS 95 (1976) 1

    Article  Google Scholar 

  39. P. Kovitya, J. J. Lowke and A. D. Stokes, Proc. 13th Intern. Conf. Phenomena in Ionized Gases, Berlin, 1977, p. 515

    Google Scholar 

  40. K. A. Ernst, J. G. Kopainsky and H. Maecker , IEEE Trans. Plasma Science PS 1 (1973) 4 and J. M. Yos, AVCO Technical Memorandum RAD-TM-63–7

    Google Scholar 

  41. E. D. Nostrand an A. B. F. Duncan, J. Amer. Chem. Soc. 76 (1954) 3377

    Google Scholar 

  42. J. A. Simpson, C. E. Kuyatt and S. R. Mielczarek, J. Chem. Phys. 44 (1966) 4403

    Article  Google Scholar 

  43. K. Codling, J. Chem. Phys. 44 (1966) 4401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lowke, J.J. (1978). Radiative Energy Transfer in Circuit Breaker Arcs. In: Ragaller, K. (eds) Current Interruption in High-Voltage Networks. Earlier Brown Boveri Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1685-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1685-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1687-0

  • Online ISBN: 978-1-4757-1685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics