Skip to main content

Ionizing Radiation-Induced DNA-Protein Cross-Linking

  • Chapter

Abstract

Ionizing radiation-induced damage in DNA includes deamination and ring scission of the purine and pyrimidine bases, base elimination by scission of the glycoside bond, and strand breaks produced by scission of the ester bond between sugar and phosphate groups or by scission of the sugar moiety. In addition, cross-linking between DNA and other substances and also intra- or inter-molecular cross-linking of DNA are produced by ionizing radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera, A., Colombara, E., and Tohâ, J., 1965, Synthesis of polyuridylic acid by y-radiation, Biochim. Biophys. Acta 95: 569577.

    Google Scholar 

  • Aguilera, A., Gampel, Z., Pieber, M., and Tohâ, J., 1968, Polymerization of nucleotides by gamma radiation, Photochem. PhotobioZ. 7: 711–720.

    Article  CAS  Google Scholar 

  • Alexander, P., and Stacey, K.A., Cross-linking of deoxyribonucleic acid in sperm heads by ionizing radiations, 1959, Nature 184: 958–960.

    Article  PubMed  CAS  Google Scholar 

  • Al-Thannon, A.A., Barton, J.P., Packer, J.E., Sims, R.J., Trumbore, C.N., and Winchester, R.V., 1974, The radiolysis of aqueous solutions of cysteine in the presence of oxygen, Int. J. Radiat. Phys. Chem. 6: 233–248.

    Article  CAS  Google Scholar 

  • Al-Thannon, A.A., Peterson, R.M., and Trumbore, C.N., 1968, Studies in the aqueous radiation chemistry of cysteine. I. Deaerated acidic solutions, J. Phys. Chem. 72: 2395–2399.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, D.A., and Wilkening, V.G., 1964, Effects of pH in the y-radiolysis of aqueous solutions of cysteine and methyl mercaptan, Can. J. Chem. 42: 2631–2635.

    Article  CAS  Google Scholar 

  • Bjorksten, J., and Andrews, F., 1964, Chemical mechanisms underlying the biological mechanisms of the aging process, J. Am. Genet. Soc. 12: 627–631.

    CAS  Google Scholar 

  • Bohne, L., Coquerelle, Th., and Hagen, U., 1970, Radiation sensi- tivity of bacteriophage DNA. II. Breaks and cross-links after irradiation in vivo, Int. J. Radiat. BioZ. 17: 205–215.

    Article  CAS  Google Scholar 

  • Brdicka, R., Spurn, Z., and Fojtfk, A., 1963, Effect of the dose intensity on the rate of radio-oxidation of cystine in aqueous solutions, Colln Czech. Chem. Commun. 28: 1491–1498.

    Google Scholar 

  • Butler, J.A.V., 1959, Changes induced in nucleic acids by ionizing radiation and chemicals, Radiat. Res. Suppl. 1: 403–416.

    Article  Google Scholar 

  • Byfield, J.E., Lee, Y.C., and Bennett, L.R., 1970, Binding of small molecules to DNA following ionizing radiation, Nature 225: 859–860.

    Article  PubMed  CAS  Google Scholar 

  • Castro, E., and Jiménez, R., 1968, The effects of gamma radiation on aqueous solutions of 2’-3’ uridylic acid, Photochem. PhotobioZ. 7: 721–726.

    Article  CAS  Google Scholar 

  • Conlay, J.J., 1963, Effect of ionizing radiation on adenine in aerated and de-aerated aqueous solutions, Nature 197: 555–557.

    Article  CAS  Google Scholar 

  • Drasil, V., Rÿznar, L., and Jurâskovâ, V., 1968, Incorporation of hydrogen into products of thymine radiolysis, Biochim. Biophys. Acta 166: 600–602.

    Article  PubMed  CAS  Google Scholar 

  • Ekert, B., 1962, Effect of y-rays on thymine in de-aerated aqueous solutions, Nature 194: 278–279.

    Article  PubMed  CAS  Google Scholar 

  • El Samahy, A., White, H.L., and Trumbore, C.N., 1964, Scavenging action in y-irradiated aqueous cysteine solutions, J. Am. Chem. Soc. 86: 3177–3178.

    Article  Google Scholar 

  • Freifelder, D., 1965, Mechanism of inactivation of coliphage T7 by X rays, Proc. Nat. Acad. Sci. USA 54: 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Freifelder, D., 1968, Physicochemical studies on X-ray inactivation of bacteriophage, Virology 36: 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg, F., 1972, Covalent binding of amino acids to proteins due to gamma irradiation, Z. Naturforsch. 27b: 85.

    CAS  Google Scholar 

  • Grant, D.W., Mason, S.N., and Link, M.A., 1961, Products of the y-radiolysis of aqueous cystine solutions, Nature 192: 352–353.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, U., Ullrich, M., Petersen, E.E., Werner, E., and Kröger, H., 1970, Enzymatic RNA synthesis on irradiated DNA, Biochim. Biophys. Acta 199: 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Hatano, H., and Tanei, T., 1971, A comparative aspect of radical species produced from several benzene derivatives by photo and ionizing radiations, Bull. Inst. Chem. Res. (Kyoto Univ.) 49: 38–42.

    CAS  Google Scholar 

  • Hawkins, R.B., 1975, Ionizing radiation induced covalent protein to DNA cross-links in coliphage T7. Abstr. Int. Symp. “Protein and Other Adducts to DNA: Their Significance to Aging

    Google Scholar 

  • Carcinogenesis, and Radiation Biology,“ Williamsburg, Virginia, May 2–6, 1975.

    Google Scholar 

  • Ivannik, B.P., and Ryabchenko, N.I., 1969, Some physicochemical changes in DNA isolated from the organs of irradiated rats (In Russian), Radiobiologiya 9: 7–14.

    CAS  Google Scholar 

  • Kamal, A., and Garrison, W.M., 1965, Radiolytic degradation of aqueous cytosine: Enhancement by a second organic solute, Nature 206: 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  • Kasche, V., 1974, Radiation-induced cross-linking of a-chymotrypsin to DNA and agarose gel, Int. J. Radiat. Biol. 26: 455–465.

    Article  CAS  Google Scholar 

  • Khattak, M.N., and Green, J.H., 1966a, Gamma-irradiation of nucleic-acid constituents in de-aerated aqueous solutions. I. Cytosine, Int. J. Radiat. Biol. 11: 131–136.

    Article  CAS  Google Scholar 

  • Khattak, M.N., and Green, J.H., 1966b, Gamma-irradiation of nucleic-acid constituents in de-aerated aqueous solutions. II. 5-Methyl cytosine, Int. J. Radiat. Biol. 11: 137–143.

    Article  CAS  Google Scholar 

  • Khattak, M.N., and Green, J.H., 1966c, Gamma-irradiation of nucleic-acid constituents in de-aerated aqueous solutions. III. Thymine and uracil, Int. J. Radiat. Biol. 11: 577–582.

    Article  CAS  Google Scholar 

  • Khattak, M.N., and Wang, S.Y., 1969, Uracil photoproducts from uracil irradiated in ice, Science 163: 1341–1342.

    Article  PubMed  CAS  Google Scholar 

  • Kritskii, G.A., 1967, Marrow nucleic acid fractions, normal and after irradiation in vivo (In Russian), Radiobiologiya 7: 193–198.

    CAS  Google Scholar 

  • Kunts, E., and Olson, P., 1975, Attachment of amino acids to ribonuclease by electron beam, UV light or photosensitization. Abstr. Int. Symp. “Protein and Other Adducts to DNA: Their Significance to Aging, Carcinogenesis, and Radiation Biology,” Williamsburg, Virginia, May 2–6, 1975.

    Google Scholar 

  • Kuroki, T., 1973, Chemical carcinogenesis in vitro, J. Radiat. Res. (Japan) 14: 51.

    Google Scholar 

  • Kuroki, T., Huberman, E., Marquardt, H., Selkirk, J.K., Heidelberger, C., Grover, P.L., and Sims, P., 1971/72, Binding of K-region epoxides and other derivatives of benzanthracene and dibenzanthracene to DNA, RNA, and proteins of transformable cells, Chem.-Biol. Interactions 4: 389–397.

    Google Scholar 

  • Latarjet, R., Ekert, B., and Demersman, P., 1963, Peroxidation of nucleic acids by radiation: Biological implications, Radiat. Res. Suppl. 3: 247–256.

    Article  CAS  Google Scholar 

  • Lett, J.T., and Alexander, P., 1961, Crosslinking and degradation of deoxyribonucleic acid gels with varying water contents when irradiated with electrons, Radiat. Res. 15: 159–173.

    Article  PubMed  CAS  Google Scholar 

  • Littman, F.E., Carr, E.M., and Brady, A.P., 1957, The action of atomic hydrogen on aqueous solutions, Radiat. Res. 7: 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Lynn, K.R., 1974, y-Radiolysis of trypsin, chymotrypsin, and chymotrypsinogen when associated with DNA, Radiat. Res. 57: 395–402.

    Google Scholar 

  • Markakis, P., and Tappel, A.L., 1959, Products of y-irradiation of cysteine and cystine, J. Am. Chem. Soc. 82: 1613–1617.

    Article  Google Scholar 

  • Owen, T.C., Rodriguez, M., Johnson, B.G., and Roach, J.A.G., 1968, The radiation chemistry of biochemical disulfides. I. The low-dose X-radiolysis of cystine, J. Am. Chem. Soc. 90: 196–200.

    Article  PubMed  CAS  Google Scholar 

  • Packer, J.E., 1963, The action of Co-gamma-rays on aqueous solutions of hydrogen sulphide and of cysteine hydrochloride, J. Chem. Soc. 2320–2325.

    Google Scholar 

  • Packer, J.E., and Winchester, R.V., 1968, Radiolysis of neutral aqueous solutions of cysteine in the presence of oxygen, Chem. Commun. 826–827.

    Google Scholar 

  • Pleticha-Lânskÿ, R., 1968, Oscillo-polarographic studies of the effects of y-radiation on adenine in aqueous solution, Int. J. Radiat. BioZ. 14: 331–339.

    Article  Google Scholar 

  • Ponnamperuma, C., Lemmon, R.M., and Calvin, M., 1963, The radiation decomposition of adenine, Radiat. Res. 18: 540–551.

    Article  PubMed  CAS  Google Scholar 

  • Pullman, B., and Pullman, A., 1963, “Quantum Biochemistry,” pp. 683–835, Interscience Publishers, New York.

    Google Scholar 

  • Purdie, J.W., 1967, y-Radiolysis of cystine in aqueous solution. Dose-rate effects and a proposed mechanism, J. Am. Chem. Soc. 18: 540–551.

    Google Scholar 

  • Rhase, H.-J., 1968, Chemical analysis of DNA alterations. III. Isolation and characterization of adenine oxidation products obtained from oligo-and mono-deoxyadenilic acids treated with hydroxyl radicals, Biochim. Biophys. Acta 166: 311–326.

    Article  Google Scholar 

  • Shragge, P.C., Varghese, A.J., Hunt, J.W., and Greenstock, C.L., 1974, Radiolysis of uracil in the absence of oxygen, Radiat. Res. 60: 250–267.

    Article  CAS  Google Scholar 

  • Skalka, M., and Matyâsovâ, J., 1967, The effect of radiation on deoxyribonucleoproteins in animal tissue. III. The character of the polydeoxyribonucleotides released from irradiated tissues, FoZia Biologica (Cze.) 13: 457–464.

    CAS  Google Scholar 

  • Sklobovskaya, M.V., and Ryabchenko, N.I., 1970a, Reduction of the yield of DNA in the deproteinization of UV or gamma-irradiated

    Google Scholar 

  • solutions of deoxyribonucleoprotein. I. Dependence of the magnitude of the effect on the completeness of the complexation

    Google Scholar 

  • of DNA with protein (In Russian), RadiobioZogiya 10:14–18.

    Google Scholar 

  • Sklobovskaya, M.V., and Ryabchenko, N.I., 1970b, Reduction of the yield of DNA in the deproteinization of UV or gammairradiated solutions of deoxyribonucleoprotein. II. Some problems of the formation of damage (In Russian), RadiobioZogiya 10: 332–337.

    CAS  Google Scholar 

  • Smith, K.C., 1962, Dose dependent decrease in extractability of DNA from bacteria following irradiation with ultraviolet light or with visible light plus dye, Biochem. Biophys. Res. Commun. 8: 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.C., 1968, The biological importance of UV induced DNA-protein cross-linking in vivo and its probable chemical mechanism, Photochem. PhotobioZ. 7: 651–660.

    Article  CAS  Google Scholar 

  • Smith, K.C., 1969, Photochemical addition of amino acids to 14Curacil, Biochem. Biophys. Res. Commun. 34: 354–357.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.C., 1970, A mixed photoproduct of thymine and cysteine: 5-S-Cysteine, 6-hydrothymine, Biochem. Biophys. Res. Commun. 39: 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.C., 1975, The radiation-induced addition of proteins and other molecules to nucleic acids, in “Photochemistry and Photobiology of Nucleic Acids” (S.Y. Wang, ed.), Academic Press, New York (in press).

    Google Scholar 

  • Smith, K.C., and Aplin, R.T., 1966, A mixed photoproduct of uracil and cysteine (5-S-Cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light, Biochemistry 5: 2125–2130.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.C., and Hays, J.E., 1968, The response of uracil-2-C to X-irradiation under nitrogen and oxygen and to treatment with ascorbic acid, Radiat. Res. 33: 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Strazhevskaya, N.B., Krivtsov, G.G., Krasichlova, Z.I., and Struchkov, V.A., 1972, Change in the complex of supermolecular DNA. Residual protein in the thymus and liver of y-irradiated rats (In Russian), Radiobiologiya 12: 19–25.

    CAS  Google Scholar 

  • Strazhevskaya, N.B., and Troyanovskaya, M.L., 1970, Method of investigating the radiation effect on chromatin deoxyribonucleoprotein (In Russian), Radiobiologiya 10: 808–814.

    CAS  Google Scholar 

  • Strazhevskaya, N.B., Troyanovskaya, M.L., and Krivtsov, G.G., 1971, Mechanism of the radiation damage to the deoxyribonucleoprotein in animal cell chromatin (In Russian), Radiobiologiya 11: 329–334.

    CAS  Google Scholar 

  • Strazhevskaya, N.B., Troyanovskaya, M.L., Struchkov, V.A., and Krasichlova, Z.I., 1969, Disturbance of the state of the DNA-protein complex of chromatin in the cell nucleus under the influence of ionizing radiation (In Russian), Radiobiologiya

    Google Scholar 

  • Tseitlin, P.I., Ryabchenko, N.I., Gorin, A.I., Tronov, V.A., Sklobovskaya, M.V., and Ivannik, B.P., 1967, The influence of ionizing radiation on the macromolecular organization of DNA and DNP (In Russian), Radiobiologiya 7: 658–669.

    CAS  Google Scholar 

  • van Hemmen, J.J., 1971, 6-Amino-8-hydroxy-7,8-dihydropurine: Radiation product of adenine, Nature N. Biol. 231: 79–80.

    Google Scholar 

  • van Hemmen, J.J., and Bleichrodt, J.F., 1971, The decomposition of adenine by ionizing radiation, Radiat. Res. 46: 444–456.

    Article  PubMed  Google Scholar 

  • Varghese, A.J., 1970, 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light, Biochem. Biophys. Res. Commun. 38: 484–490.

    Google Scholar 

  • Wilkening, V.G., Lal, M., Arends, M., and Armstrong, D.A., 1967, The y-radiolysis of cysteine in deaerated 1 N HC104 solutions, Can. J. Chem. 45: 1209–1214.

    Article  CAS  Google Scholar 

  • Wilkening, V.G., Lal, M., Arends, M., and Armstrong, D.C., 1968, The cobalt-60 y radiolysis of cysteine in deaerated aqueous solutions at pH values between 5 and 6, J. Phys. Chem. 72: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, O., 1967, Biochemical studies of radiation damage. I. Inactivation of the pH 5 fraction in amino acyl sRNA synthesis in vitro and the binding of amino acids with protein and nucleic acid by gamma-ray irradiation, Int. J. Radiat. Biol. 12: 467–476.

    Article  CAS  Google Scholar 

  • Yamamoto, O., 1972a, Radiation-induced binding of cysteine and

    Google Scholar 

  • cystine with aromatic amino acids or serum albumin in aqueous solution, Int. J. Radiat. Phys. Chem. 4:227–236.

    Google Scholar 

  • Yamamoto, O., 1972b, Radiation-induced binding of methionine with serum albumin, tryptophan or phenylalanine in aqueous solution, Int. J. Radiat. Phys. Chem. 4: 335–345.

    Article  CAS  Google Scholar 

  • Yamamoto, O., 1973a, Radiation-induced binding of nucleic acid constituents with protein constituents and with each other, Int. J. Radiat. Phys. Chem. 5: 213–229.

    Article  CAS  Google Scholar 

  • Yamamoto, 0., 1973b, Radiation-induced binding of phenylalanine, tryptophan and histidine mutually and with albumin, Radiat. Res. 54: 398–410.

    Google Scholar 

  • Yamamoto, 0., 1975, Radiation-induced binding of some protein and nucleic acid constituents with macromolecular components in cell systems, Radiat. Res. 61: 261–273.

    Google Scholar 

  • Yamamoto, O., and Okuda, A., 1975, Radiation-induced binding of OH-substituted aromatic amino acids, tyrosine and dopa, mutually and with albumin in aqueous solution, Radiat. Res. 61: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, F.K., Kröger, H., and Lucking, T., 1965, Interaction of RNA polymerase with irradiated DNA, Biochemische Zeitschrift 342: 115–119.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamamoto, O. (1976). Ionizing Radiation-Induced DNA-Protein Cross-Linking. In: Smith, K.C. (eds) Aging, Carcinogenesis, and Radiation Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1662-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1662-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1664-1

  • Online ISBN: 978-1-4757-1662-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics