Skip to main content

The Calculation of the Exchange Parameter J = ½(Esinglet−Etriplet) for Two Equivalent Electrons Using Canonical Molecular Orbitals

  • Chapter
Quantum Science

Abstract

In atomic and molecular quantum mechanics, an important realm of investigation is concerned with the calculation of the energy separation between orbital configurations that represent singlet (S = 0) and triplet (S = 1) spin states. The simplest cases to consider involve two singly occupied orbitals for the triplet state. In theories of ferro- and antiferromagnetism, these orbitals are sometimes referred to as the magnetic orbitals (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A.P. Ginsberg, Inorg. Chim. Acta Revs., 5, 45 (1971).

    Article  Google Scholar 

  2. W. Heisenberg, Z. Physik, 38, 411 (1926).

    Google Scholar 

  3. P.A.M. Dirac, Proc. Roy. Soc. London, Al23, 714 (1929).

    Google Scholar 

  4. P.O. Löwdin, (a) Revs. Modern Phys. 34, 80 (1962); (b) J. Applied Phys. Suppl., 33, 251 (1962); (c) International Summer School Lectures, Uppsala.

    Google Scholar 

  5. H.A. Kramers, Physica, 1, 182 (1934).

    Article  ADS  MATH  Google Scholar 

  6. P.W. Anderson, in “Magnetism”, (Ed. G.T. Rado and H. Suhl Academic Press, New York, 1963) Vol. 1. p. 99.

    Google Scholar 

  7. J.B. Goodenough, Phys. Rev., 100, 564 (1955).

    Article  ADS  Google Scholar 

  8. J. Kanamori, J. Phys. Chem. Solids, 10, 87 (1959).

    Article  ADS  Google Scholar 

  9. R.L. Martin, in “New Pathways in Inorganic Chemistry”, (Eds. E.A.V. Ebsworth, A.G. Maddock and A.G. Sharpe, C.U.P., 1968 ) p. 175.

    Google Scholar 

  10. J.A. Pople, D.L. Beveridge and P.A. Dobosh, J. Chem. Phys., 47, 2026 (1967).

    Article  ADS  Google Scholar 

  11. R.N. Dixon, Mol. Phys., 12, 83 (1967).

    Article  ADS  Google Scholar 

  12. J.P. Colpa, Mol. Phys., 28, 581 (1974) and references therein.

    Article  ADS  Google Scholar 

  13. J.C. Slater, (a) J. Chem. Phys., 19 220 (1951); (b) Revs.Modern Phys., 25, 199 (1953).

    Google Scholar 

  14. R. McWeeny, Proc. Roy. Soc. London, A233, 63, 306 (1954).

    Google Scholar 

  15. J.N. Murrell and K.L. McEwen, J. Chem. Phys., 25, 1143 (1956).

    Article  ADS  Google Scholar 

  16. L. Salem and C. Rowland, Angewandte Chem., Int. Ed. 11, 92 (1972).

    Article  Google Scholar 

  17. R.D. Harcourt, Australian J. Chem., 27, 2065 (1974).

    Article  Google Scholar 

  18. P. 0. Löwdin, Phys. Rev., 97, 1509 (1955).

    Article  MathSciNet  ADS  Google Scholar 

  19. C.A. Coulson and I. Fischer, Phil. Mag., 40, 386 (1949).

    MATH  Google Scholar 

  20. C.C.J. Roothaan, Revs. Modern Phys. 23, 161 (1951).

    Article  Google Scholar 

  21. S. Weinbaum, J. Chem. Phys., 1, 593 (1933).

    Article  ADS  Google Scholar 

  22. A.C. Hurley and P. Taylor, private communication.

    Google Scholar 

  23. R.D. Harcourt, unpublished results.

    Google Scholar 

  24. a) R.D. Harcourt and G. Martin, submitted for publication; (b) R.D. Harcourt and M. Leigh-Brown, unpublished results.

    Google Scholar 

  25. R.D. Harcourt, Theor. Chim. Acta, 2, 437 (1964); errata, 4, 202 (1966)

    Google Scholar 

  26. R.D. Harcourt, ibid, 6, 131 (1966)

    Google Scholar 

  27. Int. J. Quantum Chem., 4, 173 (1970); J. Mol. Structure, 9, 221 (1971).

    Google Scholar 

  28. A.T. Casey, Australian J. Chem. 25, 2311 (1972).

    Article  Google Scholar 

  29. K.T. McGregor, N.T. Watkins, D.L. Lewis, R.F. Drake, D.J. Hodgson, and W.E. Hatfield, Inorg. Nucl. Chem. Letters, 9, 423 (1973).

    Article  Google Scholar 

  30. C.G. Barraclough, R.W. Brookes and R.L. Martin, Australian J. Chem., 27, 1843 (1974).

    Article  Google Scholar 

  31. R.W. Jotham, S.F.A. Kettle and J.A. Marks, J. Chem. Soc. (Dalton) 428 (1972).

    Google Scholar 

  32. R.D. Brown and R.D. Harcourt, Australian J. Chem. 16, 737 (1963).

    Google Scholar 

  33. P.J. Hay, J.C. Thibeault and R. Hoffmann, J. American Chem. Soc., 27, 4884 (1975).

    Article  MathSciNet  Google Scholar 

  34. I.G. Dance, Inorg. Chim. Acta, 9, 77 (1974).

    Article  Google Scholar 

  35. C.K. Jorgensen, in “Modern Aspects of Ligand Field Theory” ( North Holland, Amsterdam, 1971 ) p. 317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harcourt, R.D. (1976). The Calculation of the Exchange Parameter J = ½(Esinglet−Etriplet) for Two Equivalent Electrons Using Canonical Molecular Orbitals. In: Calais, JL., Goscinski, O., Linderberg, J., Öhrn, Y. (eds) Quantum Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1659-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1659-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1661-0

  • Online ISBN: 978-1-4757-1659-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics