Skip to main content

Enzymes as Catalysts in Organic Synthesis

  • Chapter
The Enzyme Catalysis Process

Part of the book series: Progress in Mathematics ((NSSA))

Abstract

The ability of the enzymes that are present in micro-organisms to catalyse chemical reactions has been known for thousands of years; indeed the fermentation of sugars into alcohol using yeast is described in the early scriptures.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For an interesting historical review see M.K. Turner in ‘The Chemical Industry’ (ed. C.A. Heaton), Blackie, Glasgow and London, 1986, p. 284.

    Google Scholar 

  2. For full reviews see J.B. Jones, Tetrahedron,1986, 42,3351 and references therein.

    Google Scholar 

  3. R.A. Johnson, ‘Oxygenations with Micro-organisms’ in ‘Oxidation in Organic Chemistry’ ed. W.S. Trahanovsky, Academic Press, New York, 1978, Volume C; W. Charney and H.L. Herzog, ‘Microbial Transformations of Steroids’, Academic Press, New York, 1967, p. 26.

    Google Scholar 

  4. S. Butt and S.M. Roberts, Nat. Prod. Reports, 1986, 3, 489.

    Article  CAS  Google Scholar 

  5. B. Wipf, E. Kupfer, R. Bertazzi, and H.G.W. Leuenberger, Hely. Chim. Acta, 1983, 66, 485; see also J. Ehrler, F. Giovannini, B. Lamatsch, and D. Seebach, Chimia, 1986, 40, 172.

    Google Scholar 

  6. K. Mori and H. Watanabe, Tetrahedron,1981, 37,1341; idem. ibid,1986, 42,295. Professor Mori has synthesized a wide range of natural products from optically active 3-hydroxyalkanoates.

    Google Scholar 

  7. D. Seebach and M. Eberle, Synthesis, 1986, 37.

    Google Scholar 

  8. C. Fuganti, P. Grasselli, P. Casati, and M. Carmeno, Tetrahedron Letters, 1985, 26, 101; W.-R. Shieh, A.S. Gopalan, and C.J. Sih, J. Am. Chem. Soc., 1985, 107, 2993.

    Google Scholar 

  9. C.J. Sih and C.-S. Chen, Ang. Chem. Int. Ed. Engl., 1984, 23, 570.

    Article  Google Scholar 

  10. P. De Shong, M.-T. Lin, and J.J. Ferez, Tetrahedron Letters, 1986, 27, 2091.

    Google Scholar 

  11. K. Nakamura, T. Miyai, K. Nozaki, K. Ushio, S. Oka, and A. Ohno, Tetrahedron Letters, 1986, 27, 3155.

    Article  CAS  Google Scholar 

  12. K. Nakamura, M. Higaki, K. Ushio, S. Oka, and A. Ohno, Tetrahedron Letters, 1985, 26, 4213.

    Article  CAS  Google Scholar 

  13. D. Seebach, M.F. Züger, F. Giovannini, B. Sonnleitner, and A. Fiechter, Angew. Chem. Int. Ed. Engl., 1984, 23, 151.

    Article  Google Scholar 

  14. D. Buisson and R. Azerad, Tetrahedron Letters, 1986, 27, 2631.

    Google Scholar 

  15. e.g. the Noyori Reagents, see R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi and S. Akutagawa, J. Am. Chem. Soc., 1987, 109, 5856.

    Article  CAS  Google Scholar 

  16. H. Suemune, N. Hayashi, K. Funakoshi, H. Akita, T. Oishi, and K. Sakai, Chem. Pharm. Bull., 1985, 33, 2168.

    Google Scholar 

  17. G. Guanti, L. Barfi, and E. Narisano, Tetrahedron Letters, 1986, 27, 3547; T. Fujisawa, E. Kojima, T. Itoh, and T. Sato, Chem. Letters, 1985, 1751; Y. Takaishi, Y.-L. Yang, D.D. Tullio, and C.J. Sih, Tetrahedron Letters, 1982, 23, 5489.

    Google Scholar 

  18. C.-Q. Han, D. Di Tullio, Y.-F. Wang, and C.J. Sih, J. Org. Chem., 1986, 51, 1253.

    Article  CAS  Google Scholar 

  19. M. Utaka, H. Watabu, and A. Takeda, Chem. Letters, 1985, 1475.

    Google Scholar 

  20. S. Tsuboi, E. Nishiyama, M. Utaka, and A. Takeda, Tetrahedron Letters, 1986, 27, 1915.

    Article  CAS  Google Scholar 

  21. T. Fujisawa, E. Kojima, T. Itoh, and T. Sato, Tetrahedron Letters, 1985, 26, 6089.

    Article  CAS  Google Scholar 

  22. D. Buisson, S. El Baba, and R. Azerad, Tetrahedron Letters, 1986, 27, 4453.

    Article  CAS  Google Scholar 

  23. W.M. Dai and W.-S. Zhou, Tetrahedron, 1985, 41, 4475; see also D.W. Brooks, H. Mazdiyarni, and P.G. Grothaus, J. Org. Chem., 1987, 52, 3223.

    Google Scholar 

  24. see, for example, C. Fuganti, P. Grasselli, P. Casati, and M. Carmeno, Tetrahedron Letters, 1985, 26, 101.

    Article  CAS  Google Scholar 

  25. R. Bowen and S.Y.R. Pugh, Chem. Ind. (London), 1985, 10, 323.

    Google Scholar 

  26. J. Leaver, T.C.C. Gartenmann, S.M. Roberts, and M.K. Turner in ‘Biocatalysis in Organic Media’ (eds. C. Laane, J. Tramper, and M.D. Lilley), Elsevier, Amsterdam, 1987, 411.

    Google Scholar 

  27. J.B. Jones in ‘Enzymes in Organic Synthesis’ (eds. R. Porter and S. Clark), Ciba Foundation Symposium 111, Pitman, 1985, p. 3.

    Google Scholar 

  28. E. Keinar, E.F. Hafeli, K.K. Seth and R. Laned, J. Am. Chem. Soc., 1986, -, 162; for an example of a reduction using growing T. brockii see A. Belan, J. Bolte, A. Fauve, J.G. Gourcy and H. Veschambre, J. Org. Chem., 1987, 52, 256.

    Google Scholar 

  29. S. Butt, H.G. Davies, M. J. Dawson, G.C. Lawrence, J. Leaver, S.M. Roberts, M.K. Turner, B.J. Wakefield, W.F. Wall, and J.A. Winders, Tetrahedron Letters, 1985, 26, 5077; S.M. Roberts, Chem. and Ind., 1988, 384.

    Google Scholar 

  30. L.G. Lee and G.M. Whitesides, J. Org. Chem., 1986, 51, 25.

    Article  CAS  Google Scholar 

  31. B. Rambeck and H. Simon, Angew. Chem. Int. Ed. Engl., 1974, 13, 609.

    Article  Google Scholar 

  32. H.G.W. Leuenberger, W. Boguth, E. Widner, and R. Zell, Hely. Chim. Acta, 1979, 62, 455; H. Simon, H. Gunther, J. Bader, and W. Tischer, Angew. Chem. Int. Ed. Engl., 1981, 20, 861; for a recent example of a bakers’ yeast reduction of an a,ß-unsaturated aldehyde see Tetrahedron Letters, 1988, 29, 2197.

    Google Scholar 

  33. M. Utaka, S. Konishi, and A. Takeda, Tetrahedron Letters, 1986, 27, 4737.

    Article  CAS  Google Scholar 

  34. P. Gramatica, P. Manitto, D. Monti, and G. Speranza, Tetrahedron, 1986, 42, 6687; see also P. Gramatica, G. Speranza, P. Manitto, and D. Monti, ibid, 1987, 43, 4481.

    CAS  Google Scholar 

  35. K.P. Lok, I.J. Jakovac, and J.B. Jones, J. Am. Chem. Soc., 1985, 107, 2521; see also G.L. Lemiére, J.A. Lepoivre and F.C. Alderweireldt, Tetrahedron Letters, 1985, 26, 4527; the difficulties in recycling NAD(P)+ have been discussed, L.G. Lee and G.M. Whitesides, ibid, 1985, 107, 6999.

    Google Scholar 

  36. Y. Khandelwal, N.J. de Souza, S. Chatterjee, B.N. Ganguli, and R.H. Rupp, Tetrahedron Letters, 1987, 28, 4089.

    Article  CAS  Google Scholar 

  37. J.-D. Fourneron, A. Archelas, B. Vigne, and R. Furstoss, Tetrahedron, 1987, 43, 2273; V. Lamare, J.D. Fourneron, R. Furstoss, C. Ehret, and B. Corbier, Tetrahedron Letters, 1987, 28, 6269.

    Google Scholar 

  38. Y. Yamazaki and H. Maeda, Tetrahedron Letters, 1985, 26, 4775.

    Article  CAS  Google Scholar 

  39. C.J. Francis and J.B. Jones, J. Chem. Soc., Chem. Commun., 1984, 579; L.K.P. Lau, R.A.H.F. Hui, and J.B. Jones, J. Org. Chem., 1986, 51, 2047.

    Google Scholar 

  40. F. Björkling, J. Boutelje, S. Gatenbeck, K. Hult, T. Norin, and P. Szmulik, Tetrahedron, 1985, 41, 1347; F. Björkling, J. Boutelje, S. Gatenbeck, K. Hult, and T. Norin, Tetrahedron Letters, 1985, 26, 4957.

    Article  Google Scholar 

  41. M. Kurihara, K. Kamiyama, S. Kobayashi, and M. Ohno, Tetrahedron Letters, 1985, 26, 5831.

    Article  CAS  Google Scholar 

  42. G. Sabbioni and J.B. Jones, J. Org. Chem., 1987, 52, 4565.

    Article  CAS  Google Scholar 

  43. H.-J. Gais and K.L. Lukas, Angew. Chem. Int. Ed. Engl., 1984, 23, 142.

    Article  Google Scholar 

  44. B.I. Glanzer, K. Faber, and H. Griengl, Tetrahedron, 1987, 43, 771.

    Article  Google Scholar 

  45. A.J.H. Klunder, F.J.C. van Gastel, and B. Zwanenburg, Tetrahedron Letters, 1988, 29, 2697.

    Google Scholar 

  46. H. Hemmerle and H.-J. Gais, Tetrahedron Letters, 1987, 28, 3471.

    Article  CAS  Google Scholar 

  47. B.I. Glanzer, K. Faber, and H. Griengl, Tetrahedron, 1987, 43, 5791.

    Article  Google Scholar 

  48. C. Chan, P.B. Cox, and S.M. Roberts, J. Chem. Soc., Chem. Corrunun.,1988

    Google Scholar 

  49. I.C. Cotterill, H. Finch, D.P. Reynolds, S.M. Roberts, H.S. Rzepa, K.M. Short, A.M.Z. Slawin, C.J. Wallis, and D.J. Williams, J. Chem. Soc., Chem. Commun., 1988, 470.

    Google Scholar 

  50. G. Eichberger, G. Penn, K. Faber, and H. Griengl, Tetrahedron Letters, 1986, 27, 2843.

    Google Scholar 

  51. D.R. Deardorff, A.J. Matthews, D.S. McMeekin, and C.L. Craney, Tetrahedron Letters, 1986, 27, 1255.

    Article  CAS  Google Scholar 

  52. In addition trifluoroethanol reacts selectively with various a,ß-unsaturated ketones and esters to give the y-hydroxyl carbonyl compounds, T. Kitazume and N. Ishikawa, Chem. Letters, 1984, 1815.

    Google Scholar 

  53. G. Kirchner, M.P. Scollar, and A.M. Klibanov, J. Am. Chem. Soc., 1985, 107, 7072.

    Article  CAS  Google Scholar 

  54. P.E. Sonnet, J. Org. Chem., 1987, 51, 3477.

    Article  Google Scholar 

  55. G.M. Ramos Tombo, H.-P. Schdr, X. Fernandex, and O. Ghisalba, Tetrahedron Letters, 1986, 27, 5707.

    Article  Google Scholar 

  56. T.A. Savage in ‘Biotechnology of Industrial Antibiotics’, ed. E.J. Vandamme, Marcel Dekker, New York, 1984, p. 171.

    Google Scholar 

  57. I. Chibata in ‘Asymmetric Reactions and Processes in Chemistry’ (eds. E.L. Eliel and S. Otsuka), Am. Chem. Soc., Washington, 1982; see also C. Wandrey in ‘Enzymes as Catalysts in Organic Synthesis’ (ed. M. Schneider), D. Reidel, Dordrecht, 1986, p. 263.

    Google Scholar 

  58. H. Yamada in ‘Enzyme Engineering’ (eds. I. Chibata, S. Fukui, and L.B. Wingard), Vol. 6, Plenum Press, New York, 1982, p. 97; T. Fukumura, Agric. Biot. Chem., 1976, 40, 1687, 1695; idem, ibid, 1977, 41, 1327.

    Google Scholar 

  59. C.F. Barbas III and C.-H. Wong, Tetrahedron Letters, 1988, 29, 2907; E.K. Bratovanova, I.B. Stoineva, and D.D. Petkov, Tetrahedron, 1988, 44, 3633; A. A. Ferjancic, A. Puigserver, and H. Gaertner, Biotech. Letters, 1988, 10, 101.

    Google Scholar 

  60. M.-J. de Smet, B. Witholt, and H. Wynberg, J. Org. Chem., 1981, 46, 3128; A.G. Katopodis, K. Wimalasena, J. Lee, and S.W. May, J. Am. Chem. Soc., 1984, 106, 7928.

    Article  Google Scholar 

  61. C.-H. Wong and G.M. Whitesides, J. Org. Chem., 1983, 48, 3199; J.R. Durrwachter, D.G. Drueckhammer, K. Nozaki, H.M. Swears, and C.-H. Wong, J. Am. Chem. Soc., 1986, 108, 7812.

    Article  PubMed  Google Scholar 

  62. C. Fuganti, P. Grasselli, and S. Servi, J. Chem. Soc., Perkin Trans. I, 1983, 241; C. Fuganti, P. Grasselli, S. Servi, F. Spreafico, and C. Zirolfi, J. Org. Chem., 1984, 49, 4087.

    CAS  Google Scholar 

  63. E. Hochuli, Rely. Chim. Acta, 1983, 66, 489; L. Jaenicke and J. Preun, Eur. J. Biochem., 1984, 138, 319.

    Google Scholar 

  64. Y. Vo-Quang, D. Marais, L. Vo-Quang, F. Le Gaffic, A. Thiery, M. Maestracci, A. Arnaud, and P. Galzy, Tetrahedron Letters, 1987, 28, 4057.

    Article  CAS  Google Scholar 

  65. D.C. Crans and G.M. Whitesides, J. Am. Chem. Soc., 1985, 107, 7008, 7019.

    Article  CAS  Google Scholar 

  66. S. Shuto, S. Ueda, S. Imamura, K. Fukukawa, A. Matsuda, and T. Ueda, Tetrahedron Letters, 1987, 28, 199.

    Article  CAS  Google Scholar 

  67. H. Ohta, Y. Okamoto, and G. Tsuchihashi, Chem. Letters, 1984, 205; H.L. Holland, H. Popperl, R.W. Ninniss, and P.C. Chenchaiah, Can. J. Chem., 1985, 63, 1118.

    Article  Google Scholar 

  68. M.A. Findeis and G.M. Whitesides, J. Org. Chem., 1987, 52, 2838.

    Google Scholar 

  69. S.V. Ley, F. Sternfeld, and S.C. Taylor, Tetrahedron Letters, 1987, 28, 225.

    Article  CAS  Google Scholar 

  70. S.J.C. Taylor, D.W. Ribbons, A.M.Z. Slawin, D.A. Widdowson, and D.J. Williams, Tetrahedron Letters, 1987, 28, 6391.

    Article  CAS  Google Scholar 

  71. A.R. Clarke, C.J. Smith, K.W. Hart, H.W. Wilks, W.N. Chia, T.V. Lee, J.J. Birktoft, L.J. Banaszak, B.A. Barstow, T. Atkinson, and J.J. Holbrook, Biochem. Biophys. Res. Commun., 1987, 148, 15.

    Article  PubMed  CAS  Google Scholar 

  72. A.D. Napper, S.J. Benkovic, A. Tramontano, and R.A. Lerner, Science, 1987, 237, 1041.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roberts, S.M. (1989). Enzymes as Catalysts in Organic Synthesis. In: Cooper, A., Houben, J.L., Chien, L.C. (eds) The Enzyme Catalysis Process. Progress in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1607-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1607-8_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1609-2

  • Online ISBN: 978-1-4757-1607-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics