Skip to main content

Highly Excited Vibrational States and Chemical Reactivity

  • Chapter
The Enzyme Catalysis Process

Part of the book series: Progress in Mathematics ((NSSA))

  • 172 Accesses

Abstract

The movement of nuclei on the potential energy surface created by electrons has a fundamental role to play in the “becoming” of matter in the animate and inanimate world. In fact, every chemical reaction happens just because, at a given instant and due to particular circumstances, a certain nucleus (or group of nuclei) may receive sufficient energy to escape from the potential well in which it exists, vibrating around an equilibrium position. It may then leave the rest of the molecule or begin to oscillate around a new equilibrium position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See the chapters by F. Fillaux in this book, and the references therein.

    Google Scholar 

  2. See e.g., S. A. Rice, Dynamics of intramolecular transfer of vibrational energy, in “Advances in Chemical Physics”, J. Joiner, R. D. Levine and S. A. Rice, eds., Vol. XLVII, 117 (1981).

    Google Scholar 

  3. See e.g., D. G. Truhlar, R. Steckler and M. S. Gordon, Potential energy surfaces for polyatomic reaction dynamics, in “Chemical Reviews,” 87: 217 (1987).

    CAS  Google Scholar 

  4. G. Herzberg, “Infrared and Raman Spectra,” Van Nostrand Reihnold Company, NY (1945); P. Gans, “Vibrating Molecules. An Introduction to the Interpretation of Infrared and Raman Spectra,” Chapman and Hall, London (1971).

    Google Scholar 

  5. For a review on vibrational relaxation, see: V. E. Bondybey, Relaxation and vibrational energy redistribution processes in polyatomic molecules, Ann Rev. Phys. Chem. 35: 591 (1984).

    Google Scholar 

  6. R. Naaman, D. M. Lubman and R. N. Zare, Vibrational energy redistribution in glyoxal following internal conversion J. Chem, Phys. 71: 4192 (1979).

    Article  CAS  Google Scholar 

  7. J. B. Hopkins, P. R. R. Langridge-Smith and R. E. Smalley, Ground state vibrational randomization in alkylbenzenes, J. Chem. Phys. 78: 3410 (1983).

    Google Scholar 

  8. P. H. Vaccaro, J. L. Kinsey, R. W. Field and H. L. Dai, Electric dipole moments of excited vibrational levels in the X1A1 state of formaldehyde by stimulated emission spectroscopy, J. Chem. Phys. 78:3659 (1983); C. E. Hamilton, J. L. Kinsey and R. W. Field, Stimulated emission pumping: new methods in spectroscopy and molecular dynamics, Ann. Rev, Phys, Chem. 37: 493 (1986).

    Google Scholar 

  9. T. B. Simpson, J. G. Black, I. Burak, E. Yablonovitch and N. Bloembergen, Infrared multiphoton excitation of polyatomic molecules, J. Chem, Phys. 83: 628 (1985).

    Article  CAS  Google Scholar 

  10. K. V. Reddy, D. F. Heller and M. J. Berry, Highly vibrational excited benzene: overtone spectroscopy and intramolecular dynamics of C6H6, C6D6 and partially deuterated or substituted benzenes, J. Chem. Phys. 76: 2814 (1982).

    Article  CAS  Google Scholar 

  11. For a review, see F. F. Crimm, Selective excitation studies of uni-molecular reaction dynamics, Ann. Rev. Phys. Chem. 35: 657 (1984).

    Article  Google Scholar 

  12. A. Lami, Enhancement of reactivity through near-resonant radiative excitation of an overtone: a model study of an isomerization by hydrogen tunneling Chem, Phys. 115:399 (1987); A. Lami and G. Villani, Control of the yield of competing unimolecular reactions through double-resonance coherent trapping, J. Phys. Chem, 92: 4348 (1988).

    CAS  Google Scholar 

  13. E. B. Wilson, Jr., J. C. Decius and P. R. Cross, “Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra,” McGraw-Hill Book Company, London (1955).

    Google Scholar 

  14. See e.g., E. C. Kemble, “The Fundamental Principles of Quantum Mechanics,” p. 237, Dover, NY (1958).

    Google Scholar 

  15. E. L. Sibert III, J. T. Hynes and W. P. Reinhardt, Fermi resonance from a curvilinear perspective, J. Phys. Chem. 87: 2032 (1983).

    Article  CAS  Google Scholar 

  16. E. L. Sibert III, W. P. Reinhardt and J. T. Hynes, Intramolecular vibrational relaxation and spectra of CH and CD overtones in benzene and perdeuterobenzenes, J. Chem, Phys. 81:1115 (1982); Photoacoustic spectroscopy of vibrational overtones in gas-phase CH3OH and CH3OD, H. L. Fong, D. M. Meister and H. L. Swofford, J. Phys. Chem, 88: 405 (1988).

    Google Scholar 

  17. A. Lami and G. Villani, Excitation and decay of a C-H overtone coupled to a linear hydrocarbon chain: a simple quantum-mechanical model, J. Chem. Phys. 88:8 (1988) and unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lami, A. (1989). Highly Excited Vibrational States and Chemical Reactivity. In: Cooper, A., Houben, J.L., Chien, L.C. (eds) The Enzyme Catalysis Process. Progress in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1607-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1607-8_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1609-2

  • Online ISBN: 978-1-4757-1607-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics