Skip to main content

Acids, Bases, and the Nature of the Hydrogen Ion

  • Chapter
Book cover The Proton in Chemistry

Abstract

The exact verbal definition of qualitative concepts is more often the province of philosophy than of physical science. However, the various definitions suggested for acids and bases have been closely linked with the development of physical chemistry and have often served to stimulate experimental work and to further our understanding of chemical processes, and we shall therefore devote some time to this subject. The definitions used in the remainder of this book will be those proposed by Brönstedl in 1923, namely, An acid is a species having a tendency to lose a proton, and a base is a species having a tendency to add on a proton. This can be represented schematically by A ⇌ B + H+, where A and B are termed a conjugate (or corresponding) acid-base pair.2 Before examining the consequences of this definition and its relation to more recent concepts we shall consider briefly the previous history of the terms ‘acid’ and ‘base’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. N. Brönsted, Rec. Tray. Chim., 42, 718 (1923).

    Article  Google Scholar 

  2. It is frequently stated that the acid-base definition given here was put forward almost simultaneously by Brönsted and by T. M. Lowry [Chem. and Ind.,42, 43 (1923)]. However, although Lowry’s paper undoubtedly contains many of the ideas underlying this definition, especially for bases, it does not contain an explicit definition, and it is nowhere made clear that Lowry at that time regarded NH4 as an acid or CH3CO; as a base. In fact, in a later paper [J. Chem. Soc.,2562 (1927)], Lowry himself writes, More novelty is to be found in the perfectly logical conclusion of Brönsted that the anion of an acid is also a base or proton acceptor, in view of the fact that it can combine with a proton to form a molecule of the undissociated acid’: hence it does not seem justifiable to regard Lowry as one of the originators of the definition. I am indebted to the late Professor E. A. Guggenheim for calling my attention to this point. It is also noteworthy that G. N. Lewis (Valency and the Structure of Atoms and Molecules,(Reinhold, New York, 1923, p. 141) gave the same acid-base definition, and wrote, `… we may regard the ammonium ion as an acid’. However, he did not follow up the consequences of this view, and preferred the alternative definition of acids with which his name is usually associated.

    Google Scholar 

  3. P. Walden, Salts, Acids, and Bases: Electrolytes: Stereochemistry, Cornell, New York, 1929.

    Google Scholar 

  4. J. L. Gay-Lussac, Gab., Ann. Phys., 48, 341 (1814).

    Article  Google Scholar 

  5. E.g., A. Werner, Z. Anorg. Chem., 3, 267 (1893); 15, 1 (1897); Ber., 40, 4133 (1907).

    Google Scholar 

  6. G. N. Lewis, Valency and the Structure of Atoms and Molecules, Reinhold, New York, 1923.

    Google Scholar 

  7. See particularly D. P. N. Satchell and R. S. Satchell, Chem. Soc. Quart. Rev., 25, 171 (1971).

    Article  Google Scholar 

  8. For summaries see: Symposium on Hard and Soft Acids and Bases, Chem. and Eng. News.,43, 90 (1965); R. G. Pearson, Science.,151, 172 (1966); Chem. in Britain,103 (1967): Survey Progr. Chem.,5, 1 (1970): M. J. Frazer, New Scientist,662 (1967).

    Google Scholar 

  9. J. O. Edwards, G. C. Morrison, V. F. Ross, and J. W. Schultz, J. Am. Chem. Soc., 77, 266 (1955).

    Article  Google Scholar 

  10. T. P. Onak, H. Landesman, R. E. Williams, and I. Shapiro, J. Phys. Chem., 63. 1533 (1959): W. D. Phillips, H. C. Miller. and E. L. Muetterties, J. Am. Chem. Soc., 81, 4496 (1959); R. J. Thompson and J. C. Davis, Jr., Inorg. Chem., 4, 1464 (1965).

    Google Scholar 

  11. R. P. Bell, The Proton in Chemistry, Methuen, London, 1959, pp. 13, 93.

    Google Scholar 

  12. For details of the evidence and further references, see R. P. Bell, J. O. Edwards, and R. B. Jones in The Chemistry of Boron and its Compounds (ed. E. L. Muetterties ), Wiley, New York, 1966. pp. 209–221.

    Google Scholar 

  13. A. Hantzsch, Ber., 32, 575 (1899).

    Google Scholar 

  14. A. Hantzsch, Z. Elektrochem., 29, 244 (1923); 30, 202 (1924); Ber., 58, 953 (1925).

    Google Scholar 

  15. K. J. Pedersen, Kgl. Dansk Vid. Selsk. Math-fys. Medd., 12 No. 1 (1932); J. Phys. Chem., 38, 581 (1934).

    Google Scholar 

  16. Hantzsch, and most later workers, made measurements in the neighbourhood of 0°C.

    Google Scholar 

  17. M. Eigen and J. Schoen, Z. Elektrochem., 59, 483 (1955); M. Eigen and L. De Maeyer, Z. Elektrochem., 59, 986 (1955).

    Google Scholar 

  18. A. Hantzsch and M. Kalb, Ber., 32, 3116 (1899): J. G. Aston, J. Am. Chem. Soc., 52, 5254 (1930): 53, 1448 (1931).

    Google Scholar 

  19. A. Werner, Neuere Anchauungen auf dem Gebiete der anorganischen Chemie, 2nd edn., Veweg, Braunschweig, 1909, p. 218.

    Google Scholar 

  20. B. E. Conway, in Modern Aspects of Electrochemistry (ed. J. O’M. Bockris and B. E. Conway), No. 3, MacDonald, London, 1964, p. 43.

    Google Scholar 

  21. P. A. Giguère, Rev. Chim. Minérale, 3, 627 (1966).

    Google Scholar 

  22. A. Volmer, Annalen, 440, 200 (1924).

    Google Scholar 

  23. R. E. Richards and J. A. S. Smith, Trans. Faraday Soc.,47, 1261 (1951). See also Y. Kakiuchi, H. Shono, H. Matsu, and K. Kigoshi, J. Chem. Phys.,19, 1069 (1951); J. Phys. Soc. Japan,7, 102 (1952), for HClO4•H2O.

    Google Scholar 

  24. E. R. Andrew and N. D. Finch, Proc. Phys. Soc., B, 70, 980 (1957).

    Article  Google Scholar 

  25. D. E. O’Reilly, E. M. Peterson, and J. M. Williams, J. Chem. Phys., 54, 96 (1971).

    Article  Google Scholar 

  26. V. Luzzati, Acta Cryst.,4, 239 (1951); 6, 157 (1953); Y. K. Yoon and G. B. Carpenter, Acta Cryst.,12, 17 (1959); F. S. Lee and G. B. Carpenter, J. Phys. Chem.,63, 279 (1959); C. E. Nordman, Acta Cryst.,15, 18 (1962). A report [P. BourreMaladière, Compt. Rend.,246, 1063 (1958)] that H2SO4•H20 contains sulphuric acid molecules has been refuted by I. Taessler and I. Olovsson, [Acta Cryst.,B24, 299 (1968)], who found good evidence for H3O+ • HSO4.

    Google Scholar 

  27. D. E. Bethell and N. Sheppard, J. Chem. Phys., 21, 1421 (1953).

    Article  Google Scholar 

  28. C. C. Ferriso and D. F. Hornig, J. Chem. Phys., 23, 1464 (1955).

    Article  Google Scholar 

  29. D. J. Millen and E. G. Vaal, J. Chem. Soc., 2913 (1956).

    Google Scholar 

  30. J. T. Mullhaupt and D. F. Hornig, J. Chem. Phys., 24, 169 (1956); R. C. Taylor and G. L. Vidale, J. Am. Chem. Soc., 78, 5999 (1956).

    Google Scholar 

  31. H. G. Grimm, Z. Elektrochem., 31, 474 (1925).

    Google Scholar 

  32. J. Sherman, Chem. Rev., 11, 164 (1932).

    Article  Google Scholar 

  33. V. Kondratiev and N. D. Sokolov, Zh. Fiz. Khim., 29, 1265 (1955); F. W. Lampe and J. H. Futtrell, Trans. Faraday Soc., 59, 1957 (1963).

    Google Scholar 

  34. S. I. Vetchinkin, E. I. Pshenichnov, and N. D. Sokolov, Zh. Fiz. Khim., 33, 1269 (1959).

    Google Scholar 

  35. Ref. 13, p. 59.

    Google Scholar 

  36. P F. Knewstubb and A. W. Tickner, J. Chem. Phys., 36, 674 (1962); 38, 464 (1963).

    Google Scholar 

  37. H. D. Beckey, Z. Naturforsch., 14a, 712 (1959); 15a, 822 (1960).

    Google Scholar 

  38. D. Van der Raalte and A. G. Harrison, Canad. J. Chem., 41, 3118 (1963); see also M. A. Haney and J. L. Franklin, J. Chem. Phys., 50, 2028 (1969).

    Google Scholar 

  39. V. L. Tal’rose and E. L. Frankevich, Dokl. Akad. Nauk S.S.S.R., 111, 376 (1956); J. Am. Chem. Soc., 80, 2344 (1958).

    Google Scholar 

  40. J. L. Beauchamp and S. E. Butterill, J. Chem. Phys., 48, 1783 (1968); see also J. Long and B. Munson, J. Chem. Phys., 53, 1356 (1970).

    Google Scholar 

  41. For a summary up to 1963, see J. L. J. Rosenfeld, J. Chem. Phys.,40, 384 (1964); Acta Chem. Scand.,18, 1719 (1964). It is interesting to note that theory predicts a positive t H of 40–60 kcal mol-1 for the reaction H3O++H+ H402+; the last species has never been detected experimentally.

    Google Scholar 

  42. D. M. Bishop, J. Chem. Phys., 43, 4453 (1965).

    Article  Google Scholar 

  43. R. Gaspar, I. Tamassy-Lentei, and V. Kruglyak, J. Chem. Phys., 36, 740 (1962); J. W. Moskowitz and M. C. Harrison, J. Chem. Phys., 43, 3550 (1965).

    Google Scholar 

  44. A. C. Hopkinson, N. K. Holbrook, K. Yates, and I. G. Cszimadia, J. Chem. Phys., 49, 3596 (1968).

    Article  Google Scholar 

  45. H. Goldschmidt and O. Udby, Z. Phys. Chem., 60, 728 (1907); H. Goldschmidt, Z. Elektrochem., 15, 4 (1909).

    Google Scholar 

  46. It is reasonable to assume by analogy that the ‘hydrogen ion’ in an alcohol ROH has the formula ROH, hence that the equilibrium can be written ROH; +H2O ROH+H3O+; however, this cannot be deduced from experiments in which the concentration of the alcohol is effectively constant.

    Google Scholar 

  47. G. Bredig, Z. Elektrochem., 18, 535 (1912); W. S. Miller, Z. Phys. Chem., 85, 129 (1913).

    Google Scholar 

  48. G. Nonhebel and H. B. Hartley, Phil. M1dag., 50, 734 (1925); L. Thomas and E. Marum, Z. Phys. Chem., 143, 213 (1929).

    Google Scholar 

  49. P. Gross, A. Jamöck, and F. Patat, Monatsh., 63, 124 (1933).

    Google Scholar 

  50. L. S. Bagster and B. D. Steele, Trans. Faraday Soc., 8, 51 (1912); L. S. Bagster and G. Cooling, J. Chem. Soc., 693 (1920).

    Google Scholar 

  51. M. Schneider and P. A. Giguère, Compt. Rend., B, 267, 551 (1968).

    Google Scholar 

  52. See, e.g., R. Suhrmann and F. Breyer, Z. Phys. Chem., 23B, 193 (1933).

    Google Scholar 

  53. M. Falk and P. A. Giguère, Canad. J. Chem., 35, 1195 (1957); 36, 1680 (1958).

    Google Scholar 

  54. C. G. Swain and R. F. W. Bader, Tetrahedron, 10, 182 (1960); C. G. Swain, R. F. W. Bader, and E. R. Thornton, Tetrahedron, 10, 200 (1960); W. R. Busing and D. F. Hornig, J. Phys. Chem., 65, 284 (1961).

    Google Scholar 

  55. M. Eigen and L. de Maeyer, Z. Elektrochem., 60, 1037 (1956); The Structure of Electrolytic Solutions (ed. W. J. Hamer ), Wiley, New York, 1959, p. 64.

    Google Scholar 

  56. M. Eigen, Angew. Chem., 75, 489 (1963).

    Article  Google Scholar 

  57. B. E. Conway, J. O’M. Bockris, and H. Linton, J. Chem. Phys., 24, 834 (1956).

    Article  Google Scholar 

  58. L. Hall, Phys. Rer., 73, 775 (1948).

    Article  Google Scholar 

  59. T. Ackermann, Z. Phys. Chem (Frankfurt), 27, 253 (1961).

    Article  Google Scholar 

  60. R. More O’Ferrall, G. W. Koeppl, and A. J. Kresge, J. Am. Chem. Soc., 93, 1 (1971).

    Article  Google Scholar 

  61. E. G. Weidemann and G. Zundel, Z. Phys., 198, 288 (1967); G. Zundel, Angew. Chem. Internat. Edn., 8, 499 (1969).

    Google Scholar 

  62. K. Fajans and G. Joos, Z. Phys. Chem., 23, 1, 31 (1924).

    Google Scholar 

  63. E. Wicke, M. Eigen, and T. Ackermann, Z. Phys. Chem. (Frankfurt), 1, 340 (1954).

    Article  Google Scholar 

  64. E. Glueckauf, Trans. Faraday Soc., 51, 1235 (1955).

    Article  Google Scholar 

  65. R. P. Bell and K. N. Bascombe, Disc. Faraday Soc., 24, 158 (1957). A similar treatment for concentrated alkaline solution leads to a hydration number of 3 for the hydroxide ion; cf. G. Yagil and M. Anbar, J. Am. Chem. Soc., 85, 2376 (1963); R. Stewart and J. P. O’Donnell, Canad. J. Chem., 42, 1681 (1964).

    Google Scholar 

  66. A. H. Laurence, D. E. Campbell, S. E. Wiberley, and H. M. Clark, J. Phys. Chem., 60, 901 (1956); D. G. Tuck and R. M. Diamond, J. Phys. Chem., 65, 193 (1961).

    Google Scholar 

  67. E. Glueckauf and G. P. Kitt, Proc. Roy. Soc., A, 228, (1955).

    Google Scholar 

  68. J. Rudolph and H. Zimmermann, Z. Phys. Chem. (Frankfurt), 43, 311 (1964).

    Google Scholar 

  69. J. O. Lundgren and I. Olovsson, J. Chem. Phys., 49, 1068 (1968).

    Article  Google Scholar 

  70. A. C. Pavia and P. A. Giguère, J. Chem. Phys., 52, 3551 (1970).

    Article  Google Scholar 

  71. I. Olovsson, J. Chem. Phys., 49, 1063 (1968).

    Article  Google Scholar 

  72. R. D. Gillard and G. Wilkinson, J. Chem. Soc., 1640 (1964).

    Google Scholar 

  73. A. S. Gilbert and N. Sheppard, J. Chem. Soc., D, 337 (1971).

    Google Scholar 

  74. J. M. Williams and S. W. Petersen, J. Am. Chem. Soc., 91, 776 (1969); D. E. O’Reilly, E. M. Peterson, C. E. Scheie, and J. M. Williams, J. Chem. Phys., 55, 5629 (1971).

    Google Scholar 

  75. P. Kebarle, Advances in Chemistry, 72 (Am. Chem. Soc., 1968 ), p. 24.

    Google Scholar 

  76. M. de Paz, J. J. Leventhal, and L. Friedman, J. Chem. Phys., 49, 5543 (1968).

    Article  Google Scholar 

  77. M. de Paz, A. G. Giardini, and L. Friedman, J. Chem. Phys., 52, 687 (1970).

    Article  Google Scholar 

  78. E. C. Baughan, J. Chem. Soc., 1403 (1940).

    Google Scholar 

  79. H. F. Halliwell and S. C. Nyburg, Trans. Faraday Soc., 59, 1126 (1963). These authors give a useful summary of earlier estimates of this quantity. Conway prefers a slightly higher value, but gives an upper limit of 267 kcal mol-1. See also N. A. Izmailov, Zh. Fiz. Khim., 34, 2414 (1960).

    Google Scholar 

  80. J. T. Edward and I. C. Wang, Canad. J. Chem., 40, 399 (1962): G. Yagil and M. Anbar, J. Am. Chem. Soc., 85, 2376 (1963).

    Google Scholar 

  81. J. L. Moruzzi and A. V. Phelps, J. Chem. Phys., 45, 4617 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 R. P. Bell

About this chapter

Cite this chapter

Bell, R.P. (1973). Acids, Bases, and the Nature of the Hydrogen Ion. In: The Proton in Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1592-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1592-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1594-1

  • Online ISBN: 978-1-4757-1592-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics