Skip to main content

Collective Behavior in Recent Laser-Plasma Experiments

  • Chapter
Plasma Physics

Part of the book series: Nobel Symposium Committee (1976) ((NOFS,volume 36))

Abstract

The absorption of 1.06 μ light focused on small C8H8 discs has been measured in the intensity range of 1015 – 1017 W/cm The data confirms the importance of collective plasma effects in determining the absorption of intense light. The measured absorption efficiencies are in the range of 30–40%, and the scattered light has a polarization dependence. The measured absorptions are shown to be inconsistent with classical inverse bremsstrahlung. Both the magnitude of the absorption and the observed polarization dependence of the scattered light are shown to be consistent with recent calculations of light absorption via collective processes. Comparisons are made, and improved models of the light absorption are discussed with reference to the data. In addition, the heated electron energies deduced from the X-ray data are consistent with those expected via collective processes.

Research performed under the auspices of the U.S Energy and Development Administration, Contract No. W-7405-Eng-48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. L. Ginzburg, The Properties of Electronian Plasmas ( Pergamon, New York, 1964 ).

    Google Scholar 

  2. J. P. Freidberg, R. W. Mitchell, R. L. Morse and L. F. Rudsinski, Phys, Rev, Letters 28, 795 (1972).

    Article  ADS  Google Scholar 

  3. K. G. Estabrook, E. J. Valeo and W. L. Kruer, Phys, Fluids 18, 1151 (1975); E. J. Valeo and W. L. Kruer, Phys. Rev. Letters 33, 750 (1974).

    Google Scholar 

  4. D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman and. R. L. Morse, Phys. Rev. A 11, 679 (1975);

    Article  Google Scholar 

  5. J. M. Kindel, K. Lee, and. E. L. Lindman, Phys. Rev, Letters 34, 134 (1975).

    Article  ADS  Google Scholar 

  6. D. F. Dubois and M. V. Goldman, Phys. R, 11+, 207 (1967);

    Google Scholar 

  7. V. P. Silin, Sov. Phys. JETP 21, 1127 i;k. Nishikawa, J. Phys. Soc. Japan 24, 916, 1152 (1968);

    ADS  Google Scholar 

  8. K. Raw and J. M. Dawson, Phys. Fluids 12, 2586 (1969).

    Article  ADS  Google Scholar 

  9. W. L. Kruer and J. M. Dawson, Phys. Fluids 15, 446 (1972);

    Article  ADS  Google Scholar 

  10. J. S. DeGroot and J. I, Katz, ibid 16, 401 (1973).

    ADS  Google Scholar 

  11. E. A. Jackson, Phys. Rev. 153, 235 (1967);

    Article  ADS  Google Scholar 

  12. M. V. ldman, Ann. Phys. 38, 117 (1966);

    Article  ADS  Google Scholar 

  13. W. L. Kruer and J. M.:;on, Phys. Fl. 14, 1003 (1971).

    Article  ADS  Google Scholar 

  14. A. B. Langdon and B. F. Lasinski, in Methods in Computational Physics, edited by J. Killen, B. Alder, S. Fernback and M. Rotenberg (Academic, New York, 1976) Vol. 16, (in press).

    Google Scholar 

  15. J. M. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962) and 6, 394 (1963).

    Article  MathSciNet  Google Scholar 

  16. R. J. Faehl and W. L. Kruer, Phys. Fluids (to be published);

    Google Scholar 

  17. W. L. Kruer, Phys. Fluids 15, 2423 (1972).

    Article  ADS  Google Scholar 

  18. C. S. Liu, M. N. Rosenbluth and R. B. White, Phys. Fluids 17

    Google Scholar 

  19. ); and many references therein.

    Google Scholar 

  20. D. W. Forslund, J. M. Kindel and E Lindman, Phys, Rev, Letters 30, 739 (1973).

    Article  ADS  Google Scholar 

  21. W. L. Kruer, E. J. Valeo and K. G. Estabrook, Phys. Rev. Letters 35, 1076 (1975).

    Article  ADS  Google Scholar 

  22. D. W. Forslund, J. Geophys. Res. 75, 17 (1970);

    Article  ADS  Google Scholar 

  23. R. J. Bickerton, Nuclear Fusion 13, 457 (1973);

    Article  Google Scholar 

  24. R. C. Malone, R. L. McCrory and R. L. Morse, Phys. Rev, Letters 34, 721 (1975).

    Article  ADS  Google Scholar 

  25. J. A. Stamper, K. Papadopoulous, R. Sudan, S. Dean, E. McClean and J. Dawson, Phys. Rev. Letters 26, 1012 (1971);

    Article  ADS  Google Scholar 

  26. J. B. Chase, J. M. LeBlanc and J. E. Wilson; Phys. Fluids 16, 1142 (1973);

    Article  ADS  Google Scholar 

  27. J. J. Thomson, C. E. Max and K. G. Estabrook, Phys. Rev. Letters 35, 663 (1975).

    Article  ADS  Google Scholar 

  28. J. A. Stamper and B. H. Ripin, Phys. Rev, Letters 34, 138 (1975).

    Article  ADS  Google Scholar 

  29. W. Mead, R. Haas, W. Kruer, D. Phillion, H. Kornblum, J. Lindl, D. MacQuigg and V. Rupert, Lawrence Livermore Laboratory UCRL.-78106 (1976), submitted to Phys. Rev, Letters.

    Google Scholar 

  30. R. Haas, W. Mead, W. Kruer, D. Phillion, H. Kornblum, J. Lindl, D. MacQuigg and V. Rupert, submitted to Phys. Fluids

    Google Scholar 

  31. H. G. Ahlstrom, et al., in Plasma Nuclear Fusion Research, ( Internationa Agency, Vienna, 1975 ) Vol II, p. 375.

    Google Scholar 

  32. G. Charatis, et al., ibid, p. 317.

    Google Scholar 

  33. M. Lubin, et al., ibid, p. 459.

    Google Scholar 

  34. C. Yamanaka, et al., ibid, p. 421.

    Google Scholar 

  35. D. Schirmann, et al., ibid, p® 449.

    Google Scholar 

  36. K. Eidmann, et al., ibid, p. 357. Controlled.

    Google Scholar 

  37. M. Galanti, et al., ibid, p. 405®

    Google Scholar 

  38. C. Fabre, et al., ibid, p. 435.

    Google Scholar 

  39. N. G. Basov, et al., Soy. Phys. JETP 40, 61 (1975)

    ADS  Google Scholar 

  40. B. H. Ripin, et al., Phys. Rev. Letters 34, 1313 (1975)

    Article  ADS  Google Scholar 

  41. J. F. Kephart, R. P. Godwin and G. H. McCall, Appl. Phys. Letters 25, 108 (1974).

    Article  ADS  Google Scholar 

  42. T. P. Donaldson and 1. J. Spalding, Phys. Rev. Letters 36, 467 (1976).

    Article  ADS  Google Scholar 

  43. E. A. Haas, M. J. Boyle, K. R. Manes and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).

    Article  ADS  Google Scholar 

  44. J. F. Holzrichter and D. R. Speck, J. Appl. Phys., (to be published).

    Google Scholar 

  45. G. B. Zimmerman, Lawrence Livermore Laboratory UCRL-74811 (1973).

    Google Scholar 

  46. J. Dawson, P. Kali and B. Green, Phys. Fluids 12, 875 (1969).

    Article  ADS  Google Scholar 

  47. W. L. Kruer, in Proess in Lasers and Laser Fusion, edited by B. Kursunoglu, A. Perlmutter and S. Widniayer ( Plenum Press, New York, 1975 ) p. 5–26.

    Google Scholar 

  48. E. J. Valeo and K. G. Estabrook, Phys. Rev. Letters 34, 1008 (1975); K. G. Estabrook, Phys. Fluids, (in press).

    Google Scholar 

  49. W. L. Kruer and K. G. Estabrook, Lawrence Livermore Laboratory UCRL-77717 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kruer, W.L., Haas, R.A., Mead, W.C., Phillion, D.W., Rupert, V.C. (1977). Collective Behavior in Recent Laser-Plasma Experiments. In: Wilhelmsson, H. (eds) Plasma Physics. Nobel Symposium Committee (1976), vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1571-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1571-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1573-6

  • Online ISBN: 978-1-4757-1571-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics