Skip to main content

Osteogenin: Role in Bone Induction and Repair

  • Conference paper
  • 73 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 184))

Abstract

Bone has considerable potential for repair and regeneration. The aim of this article is to provide a concise review of bone induction. It presents the hypothesis that endogenous growth and differentiation factors isolated from bone matrix in conjunction with exogenous growth factors isolated from elsewhere will initiate and promote cartilage and bone repair. The potential for regeneration and repair of skeletal tissue is well known from the days of Hippocrates in ancient Greece. Almost a century ago Senn (1) described the utility of decalcified bone implants in the care of osteomyelitis. Pierre Lacroix (2), a Belgian orthopaedic surgeon proposed that bone may contain a substance christened “osteogenin” which may initiate bone growth. Marshall Urist (3) made the key discovery that demineralized, lyophilized bone matrix induced bone formation. Bone induction by demineralized bone matrix recapitulates the stages of long bone development (4–7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Senn, On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. Am. J. Med. Sci. 98: 219 (1889).

    Article  Google Scholar 

  2. P. Lacroix, Recent investigations on the growth of bone. Nature 156: 576 (1945).

    Article  Google Scholar 

  3. M. Urist, Bone formation by autoinduction. Science 150: 893 (1965).

    Article  PubMed  CAS  Google Scholar 

  4. A.H. Reddi, Cell biology and biochemistry of endochondral bone development. Collagen Rel. Res. 1: 209 (1981).

    Article  CAS  Google Scholar 

  5. A.H. Reddi and C.B. Huggins, Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc. Natl. Acad. Sci. USA 69: 1601 (1972).

    Article  PubMed  CAS  Google Scholar 

  6. A.H. Reddi and W.A. Anderson, Collagenous bone matrix-induced endochondral ossification and hemopoiesis. J. Cell Biology 69: 557 (1976).

    Article  CAS  Google Scholar 

  7. A.H. Reddi, Extracellular matrix and development, in “Extracellular Matrix Biochemistry,” K.A. Piez and A.H. Reddi, eds., Elsevier, New York (1984).

    Google Scholar 

  8. M.R. Urist, R.J. Delange and G.A.M. Finerman, Bone cell differentiation and growth factors. Science 220: 680 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. R.E. Weiss and A.H. Reddi, Synthesis and localization of fibronectin during collagenous matrix-mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc. Natl. Acad. Sci. USA 77: 2074 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. R.E. Weiss and A.H. Reddi, Role of fibronectin in collagenous matrix-induced mesenchymal cell proliferation and differentiation in vivo. Exp. Cell Res. 133: 247 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. M. Somerman, A.T. Hewitt, H.H. Varner, E. Schiffman, J.D. Termine, and A.H. Reddi, Identification of a bone matrix-derived chemotactic factor. Calcif. Tiss. Int. 35: 481 (1983).

    Article  CAS  Google Scholar 

  12. R. Landesman and A.H. Reddi, Chemotaxis of muscle-derived mesenchymal cells to bone-inductive proteins of rat. Calcif. Tiss. Int. 39: 259 (1986).

    Article  CAS  Google Scholar 

  13. V. Gauss-Miller, H.K. Kleinman, G.R. Martin and E. Schiffman, Role of attachment factors and attractants in fibroblast chemotaxis. J. Lab. Clin. Med. 96: 1071 (1980).

    Google Scholar 

  14. H. Seppa, G. Grotendorst, S. Seppa, E. Schiffman and G.R. Martin, Platelet-derived growth factor is chemotactic for fibroblasts. J. Cell Biol. 92: 584 (1980).

    Article  Google Scholar 

  15. N.C. Rath and A.H. Reddi, Collagenous bone matrix is a local mitogen. Nature 278: 855 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. T.K. Sampath, D.P. DeSimone and A.H. Reddi, Extracellular bone matrix-derived growth factor. Exp. Cell Res. 142: 460 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. J.R. Farley and D.J. Baylink, Purification of a skeletal growth factor from human bone. Biochemistry 21: 3502 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. S. Mohan, J.C. Jennings, T.A. Linkhart, J.F. Wergedal and D.J. Baylink, Primary structure of human skeletal growth factor (SGF): Homology with IGF-II. J. Bone Mineral Res. 3: S218 (1988).

    Google Scholar 

  19. E. Canalis, W.A. Peck and L.G. Raisz, Stimulation of DNA and collagen synthesis by autologous growth factor in cultured fetal rat calvaria. Science 200: 1021 (1980).

    Article  Google Scholar 

  20. E. Canalis, T. McCarthy and M. Centrella, A bone-derived growth factor isolated from rat calvariae is Beta-2 microglobulin. Endocrinology 121: 1198 (1987).

    Article  Google Scholar 

  21. P.V. Hauschka, A.E. Mavrakos, M.D. Iafrati, S.E. Doleman and M. Klagsbrun, Growth factors in bone matrix: isolation of multiple types by affinity chromatography on heparin-Sepharose. J. Biol. Chem. 261: 12665 (1986).

    PubMed  CAS  Google Scholar 

  22. D. Gospodarowicz, G. Neufeld and L. Schweigerer, Fibroblast growth factor: structural and biological properties. J. Cell Physiol. Suppl. 5: 15 (1987).

    Article  PubMed  Google Scholar 

  23. R. Ross, E.W. Raines and D.F. Bowen-Pope, The biology of platelet-derived growth factor. Cell 46: 155 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. T.K. Sampath and A.H. Reddi, Dissociative extraction and reconstitution of bone matrix components involved in local bone differentiation. Proc. Nanl. Acad. Sci. USA 78: 7599 (1981).

    Article  CAS  Google Scholar 

  25. T.K. Sampath and A.H. Reddi, Homology of bone inductive proteins from human, monkey, bovine and rat extracellular matrix. Proc. Natl. Acad. Sci. USA 80: 6591 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. T.K. Sampath, M. Nathanson and A.H. Reddi, In vitro trasformation of mesenchymal cells derived from embryonic muscle into cartilage in response to extracellular matrix components of bone. Proc. Natl. Acad. Sci. USA 81:3419 (1984).

    Google Scholar 

  27. G.T. Syftestad, J.T. Triffit, M.R. Urist and A.I. Caplan, An osteoinductive bone matrix extract stimulates the conversion of mesenchyme into chondrocytes. Calcif. Tiss. Int. 36: 625 (1984).

    Article  CAS  Google Scholar 

  28. A.H. Reddi, Collagenous bone matrix and gene expression in fibroblasts. in: Extracellular Matrix Influences on Gene Expression. H.C. Slavkin and R.C. Greulich, eds., Academic Press, New York (1975).

    Google Scholar 

  29. T.K. Sampath, N. Muthukumaran and A.H. Reddi, Isolation of osteogenin, an extracellular matrix-associated bone inductive protein by heparin affinity chromatography. Proc. Natl. Acad. Sci. USA 84: 7109 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. F.P. Luyten, N.S. Cunningham, S. Ma, N. Muthukumaran, R.G. Hammonds, W.B. Nevins, W.I. Wood and A.H. Reddi, Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J. Biol. Chem. 264: 13377 (1989).

    PubMed  CAS  Google Scholar 

  31. J.M. Wozney, V. Rosen, A.J. Celeste, L.M. Mitsock, M.J. Whitters, R.W. Kriz, R.M. Hewick and E.A.Wang, Novel regulators of bone formation: Molecular clones and activities. Science 242; 1528 (1988).

    Google Scholar 

  32. R. Howes, J.M. Bowness, G.R. Grotendorst, G.R. Martin and A.H. Reddi, Platelet-derived growth factor enhances demineralized bone matrix-induced cartilage and bone formation. Calcif. Tiss. Int. 42: 34 (1987).

    Article  Google Scholar 

  33. S.M. Seyedin, P. Segarini, D.M. Rosen, A.Y. Thompson, H. Bentz and J. Graycar, Cartilage-inducing factor B is a unique protein structurally and functionally related to transforming growth factor Beta. J. Biol. Chem. 262: 1946 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this paper

Cite this paper

Reddi, A.H., Ma, S. (1990). Osteogenin: Role in Bone Induction and Repair. In: Pecile, A., de Bernard, B. (eds) Bone Regulatory Factors. NATO ASI Series, vol 184. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1508-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1508-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1510-1

  • Online ISBN: 978-1-4757-1508-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics