Skip to main content

Symmetry-Adaptation and Selection Rules for Effective Crystal Field Hamiltonians

  • Chapter
  • 140 Accesses

Abstract

The theory of nuclear and atomic shells owes its elegance to the group theoretic method of Racah1. He implemented a branching scheme leading to rotational subgroups of the unitary group U(4ℓ+2) of transformations among the spin-orbitals |nℓmsm >2. This subgroup reduction scheme induces analogous transformations among the many-particle states of the nucleus or the electronic shells. This results in a convenient labelling according to the irreducible representations of the rotational subgroups3 as |ℓNSLMSMLWUτ >. The corresponding Lie algebra of generators consists of double tensor operators4 EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4DamaaCa % aaleqabaGaae4AamaaBaaameaacaqGXaaabeaaliaabUgadaWgaaad % baGaaeOmaaqabaaaaaaa!3AC5!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${{\text{w}}^{{{\text{k}}_{\text{1}}}{{\text{k}}_{\text{2}}}}}$$ whose (4ℓ+2)2 components EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4DamaaDa % aaleaacaqGXbWaaSbaaWqaaiaabgdaaeqaaSGaaeyCamaaBaaameaa % caqGYaaabeaaaSqaaiaabUgadaWgaaadbaGaaeymaaqabaWccaqGRb % WaaSbaaWqaaiaabkdaaeqaaaaaaaa!3E86!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\text{w}}_{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}^{{{\text{k}}_{\text{1}}}{{\text{k}}_{\text{2}}}}$$ (k1 = 0, 1; −k1 ≦ q1 ≦ k1; k2 = 0, 1, ..., 2ℓ −k2 ≦ q2 ≦ k2) span the full unitary group U(4ℓ+2). Their definition via commutation relations with angular momenta reflects the rotation properties of spherical harmonics and is supplemented by the normalization condition4: \( < s\ell \left\| {w^{k_1 k_2 } \left\| {s\ell > = \left[ {k_1 ,k_2 } \right]} \right.^{\frac{1} {2}} } \right. \). An extension of these operators into the many-body formalism requires defining them as sums of single-particle operators: EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4DamaaCa % aaleqabaGaae4AamaaBaaameaacaqGXaaabeaaliaabUgadaWgaaad % baGaaeOmaaqabaaaaOGaaGPaVlabggMi6oaaqahabaGaae4DamaaDa % aaleaacaqGPbaabaGaae4AamaaBaaameaacaqGXaaabeaaliaabUga % daWgaaadbaGaaeOmaaqabaaaaaWcbaGaaeyAaiabg2da9iaaigdaae % aacaqGobaaniabggHiLdaaaa!49A0!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${{\text{w}}^{{{\text{k}}_{\text{1}}}{{\text{k}}_{\text{2}}}}}\, \equiv \sum\limits_{{\text{i}} = 1}^{\text{N}} {{\text{w}}_{\text{i}}^{{{\text{k}}_{\text{1}}}{{\text{k}}_{\text{2}}}}} $$. Consequently, the many-particle atomic or nuclear problem can be reduced to the evaluation of matrix elements of tensor operators between the eigenstates of compound angular momentum. In practice such calculations are facilitated by the use of Wigner-Eckart theorem and the recoupling properties of angular momenta. Furthermore, coefficients of fractional parentage5 which relate N-particle states to (N-1)-particle states render the method almost algorithmic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Racah, Phys. Rev. 62: 438 (1942).

    Article  CAS  Google Scholar 

  2. B. R. Judd, Symmetry properties of atomic structure, in: “Atomic Physics,” V. W. Hughes et al., eds., Plenum Press, New York (1968).

    Google Scholar 

  3. B. R. Judd, Adv. Atom. Molec. Phys. 7: 251 (1971).

    Article  Google Scholar 

  4. B. R. Judd, “Operator Techniques in Atomic Spectroscopy”, McGraw-Hill, New York (1967).

    Google Scholar 

  5. B. R. Judd, “Second Quantization and Atomic Spectroscopy”, The Johns Hopkins University Press, Baltimore (1967).

    Google Scholar 

  6. H. Watanabe, “Operator Methods in Ligand Field Theory”, Prentice Hall, Englewood Cliffs (1966).

    Google Scholar 

  7. L. Armstrong, Jr., “Theory of the Hyperfine Structure of Free Atoms”, Wiley-Interscience, New York (1971).

    Google Scholar 

  8. L. Armstrong, Jr., J. Math. Phys. 7: 1891 (1966).

    Article  CAS  Google Scholar 

  9. Lr. Armstrong, Jr., and S. Feneuille, Adv. Atom. Mclec. Phys. 10: 1 (1974).

    Article  CAS  Google Scholar 

  10. J. P. Desclaux, Comp. Phys. Commun. 9: 31 (1975).

    Article  Google Scholar 

  11. P. G. H. Sandars, and J. Beck, Proc. Roy. Soc. Lon. A289: 97 (1965).

    Article  CAS  Google Scholar 

  12. B. G. Wybourne, J. Chem. Phys. 43: 4506 (1965).

    Article  Google Scholar 

  13. R. Chatterjee, J. A. Tuszyński, and H. A. Buckmaster, Can. J. Phys. 61: 1613 (1983).

    Article  Google Scholar 

  14. J. A. Tuszyński, Physica A131: 289 (1985).

    Article  Google Scholar 

  15. J. L. Prather, “Atomic Energy Levels in Crystals”, U.S. National Bureau of Standards, Washington, D.C. (1961).

    Google Scholar 

  16. D. M. Brink and G. R. Satchler, “Angular Momentum”, Oxford University Press, London (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuszyński, J.A. (1986). Symmetry-Adaptation and Selection Rules for Effective Crystal Field Hamiltonians. In: Gruber, B., Lenczewski, R. (eds) Symmetries in Science II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1472-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1472-2_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1474-6

  • Online ISBN: 978-1-4757-1472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics