Skip to main content

Biochemical Correlates of Tolerance in Rodents and in Drosophila. Possible Role of Alcohol Dehydrogenase, Aldehyde Dehydrogenase and Superoxide Dismutase

  • Chapter
Alcohol and Aldehyde Metabolizing Systems-IV

Abstract

In the rat, prolonged exposure to ethanol (ETOH) vapor induced an acquired increase in tolerance. After a single ETOH administration, the duration of recovery was decreased by 20% as compared to control animals and the rate of ETOH elimination from blood was increased by 27%. From the data obtained on liver enzymes—alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and superoxide dismutase (SOD)—it is suggested that the increased ALDH activity would be the consequence of an increased formation of the product of ETOH oxidation, the acetaldehyde. This overproduction would not be accounted for by ADH. It is assumed that among others, the coupled reaction SOD-catalase would represent a possible alternate pathway.

Data on Drosophila demonstrate that initial tolerance to ETOH is well correlated with ADH activity. It is suggested that ETOH metabolites (mainly acetaldehyde) would act also as determinant of this initial tolerance. The value of Drosophila as animal model for the study of behavioral and biochemical correlates of initial tolerance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chance, B., Boveris, A. and Oshino, N., 1977, Peroxide generation in mitochondria and utilization by catalase, in: “Alcohol and Aldehyde Metabolizing Systems,” R. G. Thurman, J. R. Williamson, H. R. Drott and B. Chance, eds., Academic Press, New York.

    Google Scholar 

  • Chance, B., Sies, H. and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59:527.

    Google Scholar 

  • David, J. and Bocquet, C., 1976, Compared toxicities of different alcohols for two Drosophila sibling species: D. melanogaster and D. simulans, Comp. Biochem. Physiol., 54C:71.

    Google Scholar 

  • David, J. Fouillet, P. and Arens, M. F., 1974, Comparaison de la sensibilité à l’alcool éthylique de six espèces de Drosophila du sous-groupe melanogaster, Arch. Zool. Exp. Gén., 115:401.

    Google Scholar 

  • Deitrich, R. A. and Collins, A. C., 1977, Pharmacogenetics of alcoholism, in: “Alcohol and Opiates. Neurochemical and Behavioral Mechanisms,” K. Blum, Ed., Academic Press, New York.

    Google Scholar 

  • Garcin, F., 1979, Enzymatic ethanol metabolizing systems. Comparative studies in man, rat and Drosophila, in: “Proc. Int. Symp. on Metabolic Effects of Ethanol,” North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Harada, S., Misawa, S. Agarwal, D. and Goedde, H. W., 1979, Liver alcohol dehydrogenase in Japanese: isozyme variation and its possible role in alcohol intoxication, Am. J. Hum. Genetics.(in press)

    Google Scholar 

  • Hug, C. C., 1973, Characteristics and theories related to acute and chronic tolerance development, in: “Chemical and Biological Aspects of Drug Dependence,” S. J. Mulé and H. Brill, eds., CRC Press, Cleveland.

    Google Scholar 

  • Kalant, H., 1977, Biological models of alcohol tolerance and physical dependence, in: “Alcohol Intoxication and Withdrawal,” M. M. Gross, ed., Plenum Press, New York.

    Google Scholar 

  • Kalant, H., Le Blanc, A. E. and Gibbins, R. J., 1971, Tolerance to and dependence on some non-opiate psychotropic drugs, Pharmacol. Rev., 23: 135.

    CAS  Google Scholar 

  • Kock, O. R., Bartoli, G. M. and Galeotti, T., 1979, A suggested mechanism for hepatic lipid peroxidation induced by chronic ethanol ingestion, in: “Third Int. Symp. on Alcohol and Aldehyde Metabolizing Systems,” Abstract No. 25.

    Google Scholar 

  • Le Bourhis, B., 1977, Su l’éstablissement de la dépendance des rats à l’égard de l’alcool, Physiol. Behay., 18:475.

    Google Scholar 

  • Lieber, C. S. and De Carli, L. M., 1972, The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo, J. Pharmacol. Exp. Ther., 181:279.

    Google Scholar 

  • McKenzie, J. A., 1974, The distribution of vineyard populations of Drosophila melanogaster and Drosophila simulans during vintage and non-vintage periods, Oecologia (Berl.), 15: 1.

    Google Scholar 

  • McKenzie, J. A. and Parsons, P. S., 1972, Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans, Oecologia (Berl.), 10: 373.

    Google Scholar 

  • Miceli, D. and Le Magen, J., 1979, Relations between metabolic and nervous tolerance toward ethanol in naive and chronically intoxicated rats, Pharmacol. Biochem. Behay. (in press)

    Google Scholar 

  • Pérusse, F., 1978, Etude comparative des paramètres comportementaux et métaboliques caractérisant la dépendance aux opiacés (morphine) et à l’alcool éthylique (éthanol) chez le rat naïf et dépendant à la morphine, Thèse M.Sc., Université Laval, Québec.

    Google Scholar 

  • Riley, E. P. and Lochry, E. A., 1977, Effects of initial tolerance on acquired tolerance to alcohol in two selectively bred rat strains, Drug Alc. Depend., 2:485.

    Google Scholar 

  • Sheppard, J. R., Albersheim, P. and McClearn, G., 1970, Aldehyde dehydrogenase and ethanol preference in mice, J. Biol. Chem., 245:2876.

    Google Scholar 

  • Smith, C. M., 1977, The pharmacology of sedative/hypnotics, alcohol and anesthetics: sites and mechanisms of action, in: “Drug Addiction 1: Morphine, Sedative, Hypnotic and Alcohol Dependence,” W. R. Martin, ed., Springer Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mandel, P. et al. (1980). Biochemical Correlates of Tolerance in Rodents and in Drosophila. Possible Role of Alcohol Dehydrogenase, Aldehyde Dehydrogenase and Superoxide Dismutase. In: Thurman, R.G. (eds) Alcohol and Aldehyde Metabolizing Systems-IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1419-7_77

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1419-7_77

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1421-0

  • Online ISBN: 978-1-4757-1419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics