Skip to main content

Cornea-Negative and Cornea-Positive Slow Components of the ERG and Light-induced Extracellular Potassium Changes

  • Chapter
Slow Potential Changes in the Brain

Part of the book series: Brain Dynamics ((BD))

Abstract

The electroretinogram (ERG) is the summed potential of the retina to light stimulation. The ERG shows a cornea-negative a-wave, a cornea-positive b-wave, the slow cornea-positive c-wave, and a small off-effect (see Figure 17-1). This particular ERG was recorded in a human subject during general anesthesia (Hanitzsch et al., 1966). The cellular events to which each of the ERG waves relate have been the subject of research (Tomita, 1972) but remain only partially understood (Coles, 1985; Karwoski and Proenza, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow HB, Levick WR (1965): The mechanism of directionally selective units in rabbit’s retina. J Physiol 178: 477–504

    Google Scholar 

  • Bomschein H, Hanitzsch R, v LĂĽtzow A (1966): Off-Effekt und negative Komponente des enukleierten Bulbus und der isolierten Netzhaut des Kaninchens: 1. EinfluĂź der Reizparameter. Vision Res 6: 251–259

    Article  Google Scholar 

  • Coles JA (1985): Homeostasis of extracellular fluid in retinas of invertebrates and vertebrates. In: Progress in Sensory Physiology, Vol. 6, Autrum H, Ottoson D, eds. New York: Springer-Verlag

    Google Scholar 

  • Deitmer JW, Schlue WR (1989): An inwardly directed electrogenic sodium bicarbonate cotransport in leech glial cells. J Physiol 411: 179–194

    Google Scholar 

  • Deitmer JW, Szatkowski M (1990): Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. J Physiol 421: 617–631

    Google Scholar 

  • Dick E, Miller RF, Bloomfield St (1985): Extracellular K+ activity changes related to electroretinogram components: 2. Rabbit (E-type) retinas. J Gen Physiol 85: 911–931

    Article  Google Scholar 

  • Frishman LJ, Steinberg RH (1989): Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina. J Neurophysiol 61: 1233–1243

    Google Scholar 

  • Fujimoto M, Tornita T (1979): Reconstruction of the slow Pm from the rod potential. Invest Ophthalmol Vis Sci 18: 1090–1093

    Google Scholar 

  • Fujimoto M, Tornita T (1981): Field potentials induced by injection of potassium into the frog retina: A test of current interpretations of the electroretinographic (ERG) b-wave. Brain Res 204: 51–64

    Article  Google Scholar 

  • Hanitzsch R (1973): Intraretinal isolation of Pm subcomponents in the isolated rabbit retina after treatment with sodium aspartate. Vision Res 13: 2093–2102

    Article  Google Scholar 

  • Hanitzsch R (1988): The time course of the light-induced extracellular potassium change around receptors and at the vitreal surface compared with the time course of slow Pm wave in the isolated rabbit retina. Physiol Bohemoslov 37: 227–233

    Google Scholar 

  • Hanitzsch R (1990): A comparison between the slow cornea-negative component of the electroretinogram (ERG) and extracellular K+ changes in the isolated rabbit retina. J Physiol 425: 50 P

    Google Scholar 

  • Hanitzsch R, Bornschein H, v LĂĽtzow A (1966): Off-Effekt and negative Komponente des enukleierten Bulbus and der isolierten Netzhaut des Kaninchens: 2. EinfluĂź der Temperatur. Vision Res 6: 261–269

    Article  Google Scholar 

  • Hanitzsch R, Hommer K, Bornschein H (1966): Der Nachweis langsamer Potentiale im menschlichen ERG. Vision Res 6: 245–250

    Article  Google Scholar 

  • Hanitzsch R, Tornita T, Wagner H (1984): A chamber preserving cellular function of the isolated rabbit retina suited for extracellular and intracellular recordings. Ophthalmic Res 16: 27–30

    Article  Google Scholar 

  • Hodgkin AL, McNaughten PA, Nunn BJ (1985): The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. J Physiol 358: 447–468

    Google Scholar 

  • Karwoski Chi, Proenza LM (1987): Sources and sinks of light-evoked 6.[K+]o in the vertebrate retina. Can J Physiol Pharmacol 65: 1009–1017

    Article  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966): Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 768–787

    Google Scholar 

  • Mättig W-U, Hanitzsch R (1990): [K+]o changes at the vitreal surface compared with [K+]o changes around receptors in the isolated rabbit retina. Doc Ophthalmol 75: 181–187

    Google Scholar 

  • Mättig W-U, Hanitzsch R (1991): Measurements of the extracellular potassium concentrations in the isolated rabbit retina with different kinds of potassium-sensitive microelectrodes. J Neurosci Methods 40: 127–132

    Article  Google Scholar 

  • Newman EA (1985): Membrane physiology of retinal glial (MĂĽller) cells. J Neurosci 5: 2225–2239

    Google Scholar 

  • Newman EA (1987): Distribution of potassium conductance in mammalian MĂĽller (glial) cells. J Neurosci 7: 2423–2432

    Google Scholar 

  • Oakley B II, Green DG (1976): Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol 39: 1117–1133

    Google Scholar 

  • Steinberg RH, Linsenmeier RA, Griff ER (1985): Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram. Progress in Retinal Research, Vol. 6, Osborne NN, Chader GJ, eds. New York: Pergamon Press

    Google Scholar 

  • Steinberg RH, Oakley B, Niemeyer G (1980): Light-evoked changes in [Klo in retina of intact cat eye. J Neurophysiol 44: 897–921

    Google Scholar 

  • Tornita T (1972): The electroretinogram, as analyzed by microelectrode studies. In: Handbook of Sensory Physiology, Vol. 7, Part 2, Fuortes MGF, ed. New York: Springer-Verlag

    Google Scholar 

  • Tornita T (1976): Electrophysiological studies of retinal cell function. Invest Ophthalmol 15: 169–187

    Google Scholar 

  • Trifonov JA (1968): Study of synaptic transmission between the photoreceptor and the horizontal cell using electrical stimulation of the retina. Biophysics 13: 948–957

    Google Scholar 

  • WĂĽndsch LJ (1971): Langsame Potentiale im Säuger-Elektroretinogram. Unpublished doctoral dissertation, University of Vienna

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanitzsch, R. (1993). Cornea-Negative and Cornea-Positive Slow Components of the ERG and Light-induced Extracellular Potassium Changes. In: Haschke, W., Speckmann, E.J., Roitbak, A.I. (eds) Slow Potential Changes in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1379-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1379-4_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1381-7

  • Online ISBN: 978-1-4757-1379-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics