Skip to main content

Abstract

The history of the development of ideas concerning the Hall effect of magnetic metals is discussed. The Hall voltage depends on the magnetization rather than on the external field. Also, it arises from electron scattering rather than from the free motion of electrons. Two mechanisms are active for this “anomalous” Hall effect: skew scattering and side jump. While the first one is similar to Mott scattering, the second one represents a finite lateral displacement Δy ≃ 10−10 m. of the electron on scattering. A corresponding displacement of the wavefronts of the scattered wave is discussed. Similar side jumps and forward jumps exist for electrons and photons in other parts of physics. The variation of the anomalous Hall effect with alloy composition in transition-metal series can be predicted on the basis of the simple “split-band” model. As an example, the case of amorphous Au-Fe, Au-Ni and Au-Co films is treated, and the predictions compared with experimental data.

Work supported in part by the U.S. National Science Foundation, Grant DMR 78-24679.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Hall, Phil. Mag. 10: 301 (1880).

    Google Scholar 

  2. E. H. Hall, Phil. Mag. 12:157 (1881).

    Google Scholar 

  3. A. Kundt, Wied. Ann. 49: 257 (1893).

    Article  Google Scholar 

  4. A. W. Smith and R. W. Sears, Phys. Rev. 34: 1466 (1929).

    Article  ADS  Google Scholar 

  5. J. Smit, Physica 17:612 (1951)

    Article  ADS  Google Scholar 

  6. J. Smit, Physica 21:877 (1955).

    Article  ADS  Google Scholar 

  7. A. I. Schindler and E. M. Pugh, Phys. Rev. 89:295 (1953)

    Article  ADS  Google Scholar 

  8. S. Foner and E. M. Pugh, Phys. Rev. 91:20 (1953)

    Article  ADS  Google Scholar 

  9. S. Foner, Phys. Rev. 99:1079 (1955)

    Article  ADS  Google Scholar 

  10. F. E. Allison and E. M. Pugh, Phys. Rev. 102:1281 (1956)

    Article  ADS  Google Scholar 

  11. S. Foner, Phys. Rev. 101:1648 (1956)

    Article  ADS  Google Scholar 

  12. S. Foner, F. E. Allison and E. M. Pugh, Phys. Rev. 109:1129 (1958)

    Article  ADS  Google Scholar 

  13. F. P. Beitel and E. M. Pugh, Phys. Rev. 112:1516 (1958)

    Article  ADS  Google Scholar 

  14. S. Soffer, J. A. Dreesen and E. M. Pugh, Phys. Rev. 140:A668 (1965)

    Article  ADS  Google Scholar 

  15. J. A. Dreesen and E. M. Pugh, Phys. Rev. 120:1218 (1960).

    Article  ADS  Google Scholar 

  16. E. R. Sanford, A. C. Ehrlich, and E. M. Pugh, Phys. Rev. 123:1947 (1961)

    Article  ADS  Google Scholar 

  17. A. C. Ehrlich, J. A. Dreeson and E. M. Pugh, Phys. Rev. 133:A407 (1964)

    Article  ADS  Google Scholar 

  18. G. C. Carter and E. M. Pugh, Phys. Rev. 152: 498 (1966).

    Article  ADS  Google Scholar 

  19. I. A. Campbell, Phys. Rev. Letters 24: 269 (1970).

    Article  ADS  Google Scholar 

  20. W. A. Reed and E. Fawcett, J. Appl. Phys. 35:754 (1964)

    Article  ADS  Google Scholar 

  21. R. V. Coleman, A.I.P. Conf. Proc. 29:520 (1975); plus references quoted there.

    Article  ADS  Google Scholar 

  22. A. W. Smith, Phys. Rev. 30: 1 (1910).

    ADS  Google Scholar 

  23. A. Perrier, Helv. Phys. Acta 3:317, 3:400 (1930).

    Google Scholar 

  24. J. P. Jan, Helv. Phys. Acta 22:581 (1949)

    Google Scholar 

  25. J. P. Jan, Helv. Phys. Acta 25:677 (1952).

    Google Scholar 

  26. J. P. Jan and H. M. Gijsman, Physica 18: 339 (1952).

    Article  ADS  Google Scholar 

  27. C. Kooi, Phys. Rev. 95: 843 (1954).

    Article  ADS  Google Scholar 

  28. A. I. Schindler and E. I. Salkovitz, Phys. Rev. 99: 1251 (1955).

    Article  ADS  Google Scholar 

  29. J. M. Lavine, Phys. Rev. 123: 1273 (1961).

    Article  ADS  Google Scholar 

  30. N. V. Volkenshtein and G. V. Fedorov, Phys. Metals and Metallogr. 18:26 (1964).

    Google Scholar 

  31. W. Jellinghaus and M. P. DeAndres, Ann. Physik 7: 189 (1961).

    Article  ADS  Google Scholar 

  32. W. Köster and W. Gmöhling, Z. Metallkunde 52: 713 (1961).

    Google Scholar 

  33. W. Köster and O. Römer, Z. Metallkunde 55: 805 (1964).

    Google Scholar 

  34. J. M. Luttinger, Phys. Rev. 112: 739 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  35. R. E. Peierls, “Quantum Theory of Solids,” Oxford U. Press, Oxford (1956), p. 141.

    Google Scholar 

  36. Y. Kagan and L. A. Maksimov, Sov. Phys. Solid State 7: 422 (1965).

    Google Scholar 

  37. L. E. Gurevich and I. N. Yassievich ibid. 5:1914 (1964).

    Google Scholar 

  38. Yu. P. Irkhin and V. G. Postovalov, ibid. 8: 346 (1966).

    Google Scholar 

  39. Yu. P. Irkhin, A. N. Voloshinskii and Sh. Sh. Abelskii, Phys. Stat. Sol. 22: 309 (1967).

    Article  ADS  Google Scholar 

  40. A. N. Voloshinskii and N. V. Rijanova, Fiz. Met. Metallov 34:21 (1972)

    Google Scholar 

  41. A. N. Voloshinskii and N. V. Rijanova, Fiz. Met. Metallov 35:269 (1973).

    Google Scholar 

  42. C. Lewiner, O. Betbeder-Matibet, and P. Nozieres, J. Phys. Chem. Solids 34:765 (1973).

    Article  ADS  Google Scholar 

  43. S. K. Lyo, Phys. Rev. B 8: 1185 (1973).

    Article  ADS  Google Scholar 

  44. S. K. Lyo and T. Holstein, Phys. Rev. B 9: 2412 (1974).

    Article  ADS  Google Scholar 

  45. S. K. Lyo, Phys. Rev. B 11: 1260 (1975).

    Article  ADS  Google Scholar 

  46. S. K. Lyo, Phys. Rev. B 15: 2791 (1977).

    Article  ADS  Google Scholar 

  47. L. Berger, Phys. Rev. B 2: 4559 (1970).

    Article  ADS  Google Scholar 

  48. J. Smith, Physica 24: 39 (1958).

    Article  ADS  Google Scholar 

  49. S. K. Lyo and T. Holstein, Phys. Rev. Letters 29: 423 (1972).

    Article  ADS  Google Scholar 

  50. P. Nozieres and C. Lewiner, J. Phys. (Paris) 34: 901 (1973).

    Article  Google Scholar 

  51. R. C. Fivaz, Phys. Rev. 183: 586 (1969).

    Article  ADS  Google Scholar 

  52. A. K. Majumdar and L. Berger, Phys. Rev. B 7: 4203 (1973).

    Article  ADS  Google Scholar 

  53. A. Fert and O. Jaoul, Phys. Rev. Letters 28: 303 (1972).

    Article  ADS  Google Scholar 

  54. A. Fert, Physica 86-88B:491 (1977).

    Google Scholar 

  55. A. Fert and P. M. Levy, Phys. Rev. B 16: 5052 (1977).

    Article  ADS  Google Scholar 

  56. P. Leroux-Hugon and A. Ghazali, J. Phys. C5:1072 (1972).

    ADS  Google Scholar 

  57. R. Huguenin and D. Rivier, Helv. Phys. Acta 38: 900 (1966).

    Google Scholar 

  58. W. F. Dorleijn and A. R. Miedema, Physica 86-88B:537 (1977).

    Google Scholar 

  59. O. Jaoul, Doctoral Thesis, Univ. de Paris-Sud (1974).

    Google Scholar 

  60. A. K. Majumdar and L. Berger, Phys. Rev. B 7: 4203 (1973).

    Article  ADS  Google Scholar 

  61. A. Friederich and A. Fert, Phys. Rev. B 13: 397 (1976).

    Article  ADS  Google Scholar 

  62. A. Fert and A. Friederich, A.I.P. Conf. Proc. 24: 466 (1975).

    Article  ADS  Google Scholar 

  63. L. Berger, Phys. Rev. 177: 790 (1969).

    Article  ADS  Google Scholar 

  64. R. V. Coleman, A.I.P. Conf. Proc. 29: 520 (1975).

    Article  ADS  Google Scholar 

  65. J. Smit, Physica 21: 877 (1955).

    Article  ADS  Google Scholar 

  66. S. K. Lyo, Phys. Rev. B 8:1185 (1973).

    Article  ADS  Google Scholar 

  67. J. N. Chazalviel, Phys. Rev. B 11: 3918 (1975).

    Article  ADS  Google Scholar 

  68. C. M. Hurd, Contemp. Phys. 16: 517 (1975).

    Article  ADS  Google Scholar 

  69. B. Chakraborty and P. B. Allen, Phys. Rev. Letters 42: 736 (1979).

    Article  ADS  Google Scholar 

  70. S. C. Miller and N. Ashby, Phys. Rev. Letters 29: 740 (1972).

    Article  ADS  Google Scholar 

  71. J. Picht, Ann. Physik 3:433 (1929).

    Article  ADS  MATH  Google Scholar 

  72. J. Picht, Physik Z. 30: 905 (1929).

    Google Scholar 

  73. F. Goos and H. Hänchen, Ann. Physik 1:333 (1947).

    Article  ADS  Google Scholar 

  74. F. Goos and H. Hänchen, Ann. Physik 5:521 (1949).

    Google Scholar 

  75. F. I. Federov, Dokl. Akad. Nauk SSSR 105: 465 (1955).

    MathSciNet  Google Scholar 

  76. C. Imbert, Phys. Rev. D 5: 787 (1972).

    Article  ADS  Google Scholar 

  77. C. Imbert, C. R. Acad. Sci. (Paris) B267:1401 (1968).

    Google Scholar 

  78. B. Velicky, S. Kirkpatrick and H. Ehrenreich, Phys. Rev. 175: 747 (1968).

    Article  ADS  Google Scholar 

  79. S. Kirkpatrick, B. Velicky, N. D. Lang and H. Ehrenreich, J. Appl. Phys. 40: 1283 (1969).

    Article  ADS  Google Scholar 

  80. H. Ashworth, D. Sengupta, G. Schnakenberg, L. Shapiro, and L. Berger, Phys. Rev. 185: 792 (1969).

    Article  ADS  Google Scholar 

  81. L. Berger, Physica 91B:31 (1977).

    Google Scholar 

  82. H. D. Drew and R. E. Doezema, Phys. Rev. Letters 28: 1581 (1972).

    Article  ADS  Google Scholar 

  83. K. Y. Yu, C. R. Helms, W. E. Spicer, and P. W. Chye, Phys. Rev. B 15: 1629 (1977).

    Article  ADS  Google Scholar 

  84. P. Oelhafen, E. Hauser, H. J. Güntherodt, and K. H. Bennemann, Phys. Rev. Letters 43: 1134 (1979).

    Article  ADS  Google Scholar 

  85. R. C. O’Handley and L. Berger, Inst. Phys. Conf. Ser. (London) 39:477 (1978).

    Google Scholar 

  86. R. C. O’Handley, Phys. Rev. B 18: 2577 (1978).

    Article  ADS  Google Scholar 

  87. W. Felsch, Z. f. Angew. Physik 29: 217 (1970).

    Google Scholar 

  88. G. Bergmann, Z. Physik B25:255 (1976).

    ADS  Google Scholar 

  89. G. Bergmann, Solid State Comm. 18:897 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  90. G. Bergmann and P. Marquardt, Phys. Rev. B 18:326 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berger, L., Bergmann, G. (1980). The Hall Effect of Ferromagnets. In: Chien, C.L., Westgate, C.R. (eds) The Hall Effect and Its Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1367-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1367-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1369-5

  • Online ISBN: 978-1-4757-1367-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics