Skip to main content

Blocking Pharmacology of Batrachotoxin-Activated Sodium Channels

  • Chapter
Book cover Ion Channel Reconstitution

Abstract

Biochemical progress toward the mechanism of voltage-dependent Na+ channels has enjoyed the benefit of an extensive molecular pharmacology that includes natural specific toxins as well as synthetic chemical probes of this channel. The recently introduced method of studying chemically activated Na+ channels in planar lipid bilayers with the use of batrachotoxin (Krueger et al., 1983) makes it possible to examine functional manifestations of Na+-channel pharmacology at the level of individual channel macromolecules. In this chapter, we summarize the results of our investigations of the blocking of batrachotoxin-activated Na+ channels from rat skeletal muscle by three classes of pharmacological agents: specific guanidinium toxins, synthetic organic cations, and local anesthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albuquerque, E. X., Brookes, N., Onur, R., and Warnick, J. E., 1976, Kinetics of interaction of batrachotoxin and tetrodotoxin on rat diaphram muscle, Mol. Pharmacol. 12:82–91.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1975, Potassium pores of nerve and muscle membranes, in: Membranes: A Series of Advances (G. Eisenman, ed.), pp. 325-358, Marcel Dekker, New York.

    Google Scholar 

  • Bell, J. E., and Miller, C., 1984, Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum, Biophys. J. 45:279–287.

    Article  PubMed  CAS  Google Scholar 

  • Cahalan, M. D., and Almers, W., 1979, Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin, Biophys. J. 27:39–56.

    Article  PubMed  CAS  Google Scholar 

  • Creveling, C. R., McNeal, E. T., Daley, J. W., and Brown, G. B., 1983, Batrachotoxin-induced depolarization and [3H]bactrachotoxinin-A 20 α-benzoate binding in a vesicular preparation from guinea pig cerebral cortex: Inhibition by local anesthetics, Mol. Pharmacol. 23:350–358.

    PubMed  CAS  Google Scholar 

  • Cruz, L. J., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, D., and Moczydlowski, E., 1985, Conus geographus toxins that discriminate between neuronal and muscle sodium channels, J. Biol. Chem. 260:9280–9288.

    PubMed  CAS  Google Scholar 

  • French, R. J., Worley, J. F., and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated in planar lipid bilayers, Biophys. J. 45:301–312.

    Article  PubMed  CAS  Google Scholar 

  • Hall, S., 1982, Toxins and Toxicity of Protogonyaulax from the Northeast Pacific, Ph.D. Thesis. University of Alaska, Fairbanks.

    Google Scholar 

  • Hall, S., Reichardt, P. B., and Neve, R. A., 1980, Toxins extracted from an Alaskan isolate of Protogonyaulax sp, Biochem. Biophys. Res. Commun. 97:649–653.

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., Ritchie, J. M., and Strichartz, G. R., 1974, Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channel of nerve membrane, Proc. Natl. Acad. Sci. U.S.A. 71:3936–3940.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1975, The receptor for tetrodotoxin and saxitoxin: A structural hypothesis, Biophys. J. 15:615–619.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1977a, The pH-dependent rate of action of local anesthetics on the node of Ranvier, J. Gen. Physiol. 69:475–496.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1977b, Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction, J. Gen. Physiol. 69:497–515.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., Ritchie, J. R., and Strichartz, G. R., 1975, The effect of surface charge on the nerve membrane in the action of tetrodotoxin and saxitoxin in frog myelinated nerve, J. Physiol. (Lond.) 250:34-35P.

    Google Scholar 

  • Horn, R., Patlak, J., and Stevens, C. F., 1981, The effect of tetramethylammonium on single sodium channel currents, Biophys. J. 36:321–327.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L. M., and Ehrenstein, G., 1981, Local anesthetics QX-572 and benzocaine act at separate sites on the batrachotoxin-activated sodium channel, J. Gen. Physiol. 77:137–153.

    Article  PubMed  CAS  Google Scholar 

  • Jencks, W. P., 1981, On the attribution and additivity of binding energies, Proc. Natl. Acad. Sci. U.S.A. 78:4046–4050.

    Article  PubMed  CAS  Google Scholar 

  • Kao, C. Y., and Nishiyama, A., 1965, Action of saxitoxin on peripheral neuromuscular systems, J. Physiol. (Lond.) 180:50-66.

    Google Scholar 

  • Kao, C. Y., and Walker, S. E., 1982, Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon, J. Physiol. (Lond.) 323:619-637.

    Google Scholar 

  • Khodorov, B. L., Peganov, E. M., Revenko, S. V., and Shishkova, L. D., 1975, Sodium currents in voltage clamped nerve fiber of frog under the combined action of batrachotoxin and procaine, Brain Res. 84:541–546.

    Article  PubMed  CAS  Google Scholar 

  • Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S., 1977, Electrostatic potentials at membrane-solution interfaces, Curr. Top. Membr. Transport 9:71–144.

    Article  CAS  Google Scholar 

  • Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin/ saxitoxin binding protein from Electrophorus electricus: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E., Garber, S. S., and Miller, C., 1984a, Batrachotoxin-activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E., Hall, S., Garber, S. S., Strichartz, G. S., and Miller, C., 1984b, Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins: Effect of toxin charge, J. Gen. Physiol. 84:687–704.

    Article  PubMed  CAS  Google Scholar 

  • Postma, S. W., and Catterall, W. A., 1984, Inhibition of binding of [3H]batrachotoxin in A 20-α-benzoate to sodium channels by local anesthetics, Mol. Pharmacol. 25:219–227.

    PubMed  CAS  Google Scholar 

  • Rogers, R. S., and Rapoport, H., 1980, The pKa’s of saxitoxin, J. Am. Chem. Soc. 102:7335–7339.

    Article  CAS  Google Scholar 

  • Sato, S., Nakamura, H., Ohizumi, Y., Kobayashi, J., and Hirata, Y., 1983, The amino acid sequences of homologous hydroxyproline-containing myotoxins from the marine snail Conus geographus venom, FEBS Lett. 155:277–280.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, Y., Hsu, C., Fallon, W. E., Oshima, Y., Miura, I., and Nokanishi, K., 1978, Structure of neosaxitoxin, J. Am. Chem. Soc. 100:6791–6793.

    Article  CAS  Google Scholar 

  • Shimizu, Y., Hsu, C., and Genenah, A., 1981, Structure of saxitoxin in solution and stereochemistry of dihydrosaxitoxins, J. Am. Chem. Soc. 103:605–609.

    Article  CAS  Google Scholar 

  • Strichartz, G. R., 1973, The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine, J. Gen. Physiol. 62:37–57.

    Article  PubMed  CAS  Google Scholar 

  • Strichartz, G., 1976, Molecular mechanisms of nerve block by local anesthetics, Anesthesiology 45:421–441.

    Article  PubMed  CAS  Google Scholar 

  • Strichartz, G., 1984, Structural determinants of the affinity of saxitoxin for neuronal sodium channels: Electrophysiological studies on frog peripheral nerve, J. Gen. Physiol. 84:281–305.

    Article  PubMed  CAS  Google Scholar 

  • Strichartz, G. R., and Ritchie, J. M., 1985, The action of local anesthetics on ion channels of excitable tissues, in: Handbook of Experimental Pharmacology: Local Anesthetics (G. Strichartz, ed.), Springer, New York (in press).

    Google Scholar 

  • Woodhull, A., 1973, Ionic blockage of sodium channels in nerve, J. Gen. Physiol. 61:687–708.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, D., and Yeh, J. Z., 1984, Kinetics of 9-aminoacridine block of single Na channels, J. Gen. Physiol. 84:361–377.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moczydlowski, E., Uehara, A., Hall, S. (1986). Blocking Pharmacology of Batrachotoxin-Activated Sodium Channels. In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics