Skip to main content

Reconstitution of the Sodium Channel from Electrophorus Electricus

  • Chapter
Ion Channel Reconstitution

Abstract

The sodium (Na+) channel that transiently depolarizes nerve and muscle membranes in the initial phase of the action potential (Hodgkin and Huxley, 1952; Cahalan, 1980) is perhaps the archetypical voltage-gated channel. Advances in the biochemical isolation, characterization, and functional reconstitution of Na+− channel proteins from the electroplax of electric fish (Miller et al., 1983; Norman et al., 1983; Rosenberg et al., 1984a, b), mammalian skeletal muscle (Barchi, 1983; Weigele and Barchi, 1982; Tanaka et al., 1983), and mammalian brain (Hartshorne and Catterall, 1984; Talvenheimo et al., 1982; Tamkun et al., 1984) have recently been made (for review, see Agnew, 1984). In addition, the cDNA for the principal peptide component of the electroplax channel has been cloned and sequenced, providing the first extensive information about the primary structure and allowing deductions of the possible secondary and tertiary structure of the protein (Noda et al., 1984). These biochemical, biophysical, and molecular biological approaches, including specific protein chemical modifications, site-specific mutagenesis, electron microscopic structural analysis, and functional reconstitution will provide important insights into the structures and mechanisms of the channel. This chapter concentrates on reconstitution studies with the purified electroplax Na+ channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, W. S., 1984, Voltage-regulated sodium channel molecules, Annu. Rev. Physiol. 46:517–530.

    Article  PubMed  CAS  Google Scholar 

  • Agnew, W. S., and Raftery, M. A., 1979, Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition, Biochemistry 10:1912–1919.

    Article  Google Scholar 

  • Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. U.S.A. 75:2606–2610.

    Article  PubMed  CAS  Google Scholar 

  • Agnew, W. S., Miller, J. A., Ellisman, M. H., Rosenberg, R. L., Tomiko, S. A., and Levinson, S. R., 1983, The voltage-regulated sodium channel from the electroplax of Electrophorus electricus, Cold Spring Harbor Symp. Quant. Biol. 48:165–179.

    Article  CAS  Google Scholar 

  • Aldrich, R. W., Corey, D. P., and Stevens, C. F., 1983, A reinterpretation of mammalian sodium channel gating based on single channel recording, Nature 306:436–441.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., 1983, Protein components of the purified sodium channel from rat skeletal muscle sarcolemma, J. Neurochem. 40:1377–1385.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, E., and Rosenberry, T. L., 1973, Modification of electroplax excitability by veratridine, Biochim. Biophys. Acta 298:973–985.

    Article  PubMed  CAS  Google Scholar 

  • Cahalan, M. D., 1980, Molecular properties of sodium channels in excitable membranes, in: The Cell Surface and Neuronal Function (C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), pp. 1–47, Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • Cahalan, M. D., and Begenisich, T., 1976, Sodium channel selectivity. Dependence on internal permeant ion concentrations, J. Gen. Physiol. 68:111–125.

    Article  PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1980, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Annu. Rev. Pharmacol. Toxicol. 20:15–43.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, W. K., and Meves, H., 1965, Voltage-clamp experiments on internally perfused giant axons, J. Physiol. (Lond.) 180:788-820.

    Google Scholar 

  • Corey, D. P., and Stevens, C. F., 1983, Science and technology of patch recording electrodes, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.) pp. 53–68, Plenum Press, New York.

    Chapter  Google Scholar 

  • Ebert, G. A., and Goldman, L., 1976, The permeability of the sodium channel in Myxicola to the alkali cations, J. Gen. Physiol. 68:327–340.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J. M., 1974, Selective blocking of the nodal sodium channels by ultraviolet radiation. I. Phenomenology of the radiation effect, Pfluegers Arch. 351:287–301.

    Article  CAS  Google Scholar 

  • Garcia, A. M., and Miller, C., 1984, Channel mediated monovalent cation fluxes in isolated sarcoplasmic reticulum vesicles, J. Gen. Physiol. 83:819–839.

    Article  PubMed  CAS  Google Scholar 

  • Garty, H., Rudy, B., and Karlish, S. J. D., 1983, A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogeneous populations of membrane vesicles, J. Biol. Chem. 258:13094–13099.

    PubMed  CAS  Google Scholar 

  • Gasko, O. D., Knowles, A. F., Shertzer, H. G., Suolinna, E.-M., and Racker, E., 1976, The use of ion-exchange resins for studying ion transport in biological systems, Anal. Biochem. 72:57–65.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfleugers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  • Hartshorne, R. P., and Catterall, W. A., 1984, The sodium channel from rat brain. Purification and subunit composition, J. Biol. Chem. 259:1667–1675.

    PubMed  CAS  Google Scholar 

  • Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1972, The permeability of the sodium channel to metal cations in myelinated nerve, J. Gen. Physiol. 59:637–658.

    Article  PubMed  CAS  Google Scholar 

  • Hjelmeland, L. H., 1980, A non-denaturing zwitterionic detergent for membrane biochemistry: Design and synthesis, Proc. Natl. Acad. Sci. U.S.A. 77:6368–6370.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.

    CAS  Google Scholar 

  • Holloway, P. W., 1973, A simple procedure for removal of Triton X-100 from protein samples, Anal. Biochem. 53:304–308.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R., Patlak, J., and Stevens, C. F., 1981, The effect of tetramethylammonium on single sodium channel currents, Biophys J. 36:321–327.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels. Effects of N-bromoacetamide, Biophys. J. 45:323–335.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1979, Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants, J. Gen. Physiol. 73:839–854.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L. M., Moran, N., and Ehrenstein, G., 1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 79:2082–2085.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L. M., Moran, N., and Ehrenstein, G., 1984, Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements, Biophys. J. 45:313–322.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., 1967, Permeability and internal concentration of ions during depolarization of the electroplax, Proc. Natl. Acad. Sci. U.S.A. 58:1162–1167.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function (C. W. Cotman, G. Poste, and G. L. Nicholson, eds.), pp. 191–260, Elsevier/North-Holland, Biomedical Press.

    Google Scholar 

  • Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes, J. Biol. Chem. 252:7384–7390.

    PubMed  CAS  Google Scholar 

  • Keynes, R. D., and Martins-Ferriera, H., 1953, Membrane potentials in the electroplates of the electric eel, J. Physiol. (Lond.) 119:315–351.

    CAS  Google Scholar 

  • Khodorov, B. I., 1978, Chemicals as tools to study nerve fiber sodium channels. Effects of batrachotoxin and some local anesthetics, in: Membrane Transport Processes, Vol. 2 (D. C. Tosteson, Y. A. Ovchinnikov, and R. Latorre, eds.), pp. 153–174, Raven Press, New York.

    Google Scholar 

  • Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayers, Nature 303:172–175.

    Article  PubMed  CAS  Google Scholar 

  • Landowne, D., 1975, A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid, J. Physiol. (Lond.) 252:79-96.

    Google Scholar 

  • Levinson, S. R., 1975, Studies on excitable membrane proteins, Ph.D. Thesis, University of Cambridge, Cambridge.

    Google Scholar 

  • Levinson, S. R., Curatalo, C. J., Reed, J., and Raftery, M. A., 1979, A rapid and precise assay for tetrodotoxin binding to detergent extracts of excitable tissues, Anal. Biochem. 99:72–84.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin/ saxitoxin binding protein from Electrophorus electric us: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E., Garber, S. S., and Miller, C., 1984, Batrachotoxin-activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.

    Article  PubMed  CAS  Google Scholar 

  • Moore, H.-P. H., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance, Proc. Natl. Acad. Sci. U.S.A. 77:4509–4513.

    Article  PubMed  CAS  Google Scholar 

  • Moore, A. C., Agnew, W. S., and Raftery, M. A., 1982, Biochemical characterization of the tetrodotoxin binding protein from Electrophorus electricus, Biochemistry 24:6212–6220.

    Article  Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Norman, R. I., Schmid, A., Lombet, A., Barhanin, J., and Lazdunski, M., 1983, Purification of binding protein for Tityus 7-toxin identified with the gating component of the voltage-sensitive Na+ channel, Proc. Natl. Acad. Sci. U.S.A. 80:4164–4168.

    Article  PubMed  CAS  Google Scholar 

  • Pick, U., 1981, Liposomes with a large trapping capacity prepared by freezing and thawing sonicated phospholipid mixtures, Arch. Biochem. Biophys. 212:186–194.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, R. L., 1985, Functional reconstitution of the voltage-regulated sodium channel purified from the electroplax of Electrophorus electricus, Ph.D. dissertation, Yale University, New Haven.

    Google Scholar 

  • Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984a, Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:1239–1243.

    Article  CAS  Google Scholar 

  • Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984b, Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:5594–5598.

    Article  CAS  Google Scholar 

  • Sakmann, B., and Neher, E., 1983, Geometric parameters of pipettes and membrane patches, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 37–51, Plenum Press, New York.

    Chapter  Google Scholar 

  • Sigworth, F. J., 1983, Electronic design of the patch clamp, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 3–35, Plenum Press, New York.

    Chapter  Google Scholar 

  • Sigworth, F. J., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells, Nature 287:447–449.

    Article  PubMed  CAS  Google Scholar 

  • Talvenheimo, J. A., Tamkun, M. M., and Catterall, W. S., 1982, Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain, J. Biol. Chem. 257:11868–11871.

    PubMed  CAS  Google Scholar 

  • Tamkun, M. M., Talvenheimo, J. A., and Catterall, W. A., 1984, The sodium channel from rat brain. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components, J. Biol. Chem. 259:1676–1688.

    PubMed  CAS  Google Scholar 

  • Tanaka, J. C., Eccleston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma, J. Biol. Chem. 258:7519–7526.

    PubMed  CAS  Google Scholar 

  • Tank, D. W., and Miller, C., 1983, Patch-clamped liposomes: Recording reconstituted ion channels, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 91–105, Plenum Press, New York.

    Chapter  Google Scholar 

  • Tomiko, S. A., Rosenberg, R. L., and Agnew, W. S., 1984, A fluorescence assay for cation flux into liposomes containing sodium channels purified from Electrophorus electricus, Soc. Neurosci. Abstr. 10:864.

    Google Scholar 

  • Tomiko, S. A., Rosenberg, R. L., Emerick, M. C., and Agnew, W. S., 1986, A fluorescence assay for neurotoxin-modulated ion transport by the reconstituted voltage-activated Na channel isolated from eel electric organ, Biochemistry (in press).

    Google Scholar 

  • Udenfriend, S., 1962, Fluorescence Assay in Biology and Medicine, pp. 498–501, Academic Press, New York.

    Google Scholar 

  • Villegas, R., Villegas, G. M., Barnola, F. V., and Racker, E., 1977, Incorporation of the sodium channel of lobster nerve into artificial liposomes, Biochem. Biophys. Res. Commun. 79:210–217.

    Article  PubMed  CAS  Google Scholar 

  • Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc. Natl. Acad. Sci. U.S.A. 79:3651–3655.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Agnew, W.S., Rosenberg, R.L., Tomiko, S.A. (1986). Reconstitution of the Sodium Channel from Electrophorus Electricus . In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics