Skip to main content

Dependence of Protein Synthesis on Aortic Pressure and Calcium Availability

  • Chapter

Part of the book series: Advances in Myocardiology ((ADMY))

Abstract

Increased aortic pressure accelerated protein synthesis in control–beating and ar- rested–drained hearts supplied with either glucose or pyruvate. Elevation of perfusion pressure from 60 to 120 mm Hg increased oxygen consumption in control–beating but not in arrested–drained preparations. Energy availability, as assessed by adenylate energy charge or creatine phosphate/creatine ratio, or both, was increased in arrested–drained hearts supplied with glucose and perfused at 60 and 120 mm Hg aortic pressure. In control–beating or arrested–drained hearts supplied with pyruvate, energy availability was not improved by elevation of aortic pressure from 60 to 120 mm Hg. An increase of perfusate calcium concentration from 0.5 to 5.0 mM in control–beating Langendorff preparations supplied with glucose and perfused at an aortic pressure of 90 mm Hg doubled oxygen consumption and decreased energy availability, but had no effect on the rate of protein synthesis. In arrested–drained hearts supplied with either glucose or pyruvate and calcium concentrations ranging from 0.5 to 5.0 mM, the rates at 120 mm Hg aortic pressure were 11–25% higher than at 60 mm Hg. These findings provide no evidence to implicate increased oxidative metabolism, energy availability, or extracellular calcium concentration as important factors in the mechanism that accounts for the effect of increased aortic pressure on protein synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schreiber, S. S., Oratz, M., and Rothschild, M. A. 1966. Protein synthesis in the overloaded mammalian heart. Am. J. Physiol. 211:314–318.

    PubMed  CAS  Google Scholar 

  2. Hjalmarson, A., and Isaksson, O. 1972. In vitro work load and rat heart metabolism. I. Effect on protein synthesis. Acta Physiol. Scand. 86:126–144.

    Article  PubMed  CAS  Google Scholar 

  3. Morgan, H. E., Chua, B. H. L., Fuller, E. O., and Siehl, D. 1980. Regulation of protein synthesis and degradation during in vitro cardiac work. Am. J. Physiol. 238:E431-E442.

    Google Scholar 

  4. Kira, Y., Kochel, P. J., Gordon, E. E., and Morgan, H. E. 1984. Aortic perfusion pressure as a determinant of cardiac protein synthesis. Am. J. Physiol. 246:C247-C258, 1984.

    Google Scholar 

  5. Hjalmarson, A., and Isaksson, O. 1972. In Vitro work load and rat heart metabolism. III. Effect on ribosomal aggregation. Acta Physiol. Scand. 86:342–352.

    Article  PubMed  CAS  Google Scholar 

  6. Schreiber, S. S., Rothschild, M. A., Evans, C., Reff, F., and Oratz, M. 1975. The effect of pressure or flow stress on right ventricular protein synthesis in the face of constant and restricted coronary perfusion. J. Clin. Invest. 55:1–11.

    Article  PubMed  CAS  Google Scholar 

  7. Jefferson, L. S., Wolpert, E. B., Giger, K. E., and Morgan, H. E. 1971. Regulation of protein synthesis in heart muscle. III. Effect of anoxia on protein synthesis. J. Biol. Chem. 246:2171–2178.

    PubMed  CAS  Google Scholar 

  8. Takala, T. 1981. Protein synthesis in the isolated perfused rat heart: Effects of mechanical work load, diastolic ventricular pressure and coronary flow on amino acid incorporation and its transmural distribution into left ventricular protein. Basic Res. Cardiol. 76:44–61.

    Article  PubMed  CAS  Google Scholar 

  9. Schreiber, S. S., Hearse, D. J., Oratz, M., and Rothschild, M. A. 1977. Protein synthesis in prolonged cardiac arrest. J. Mol. Cell. Cardiol. 9:87–100.

    Article  PubMed  CAS  Google Scholar 

  10. Opie, L. H. 1965. Coronary flow rate and perfusion pressure as determinants of mechanical function and oxidative metabolism of isolated perfused rat heart. J. Physiol. 180:529–543.

    PubMed  CAS  Google Scholar 

  11. Neely, J. R., Liebermeister, H., Battersby, E. J., and Morgan, H. E. 1967. Effect of pressure development on oxygen consumption by isolated rat heart. Am. J. Physiol. 212:804–814.

    PubMed  CAS  Google Scholar 

  12. Arnold, G. F., Kosche, E., Miessner, E., Neitzert, A., and Lochner, W. 1968. The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption. Pfluegers Arch. 299:339–356.

    Article  CAS  Google Scholar 

  13. Vogel, W. M., Apstein, C. S., Briggs, L. L., Gaasch, W. H., and Ahn, J. 1982. Acute alterations in left ventricular diastolic chamber stiffness: Role of the “erectile” effect of coronary arterial pressure and flow in normal and damaged hearts. Circ. Res. 51:465–478.

    Article  PubMed  CAS  Google Scholar 

  14. Peterson, M., and Lesch, M. 1972. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Circ. Res. 31:317–327.

    Article  PubMed  CAS  Google Scholar 

  15. Flaim, K. E., Kochel, P. J., Kira, Y., Kobayashi, E. T., Fossel, E. T., Jefferson, L. S., and Morgan, H. E. 1983. Insulin effects on protein synthesis are independent of glucose and energy metabolism. Am. J. Physiol. 245(Cell Physiol. 14):C133–C143.

    Google Scholar 

  16. McKee, E. E., Cheung, J. Y., Rannels, D. E., and Morgan, H. E. 1978. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J. Biol. Chem. 253:1030–1040.

    PubMed  CAS  Google Scholar 

  17. Kira, Y., Kochel, P., and Morgan, H. E. 1983. Aortic pressure and protein synthesis. In: J. J. Spitzer (ed.), Myocardial Injury. pp. 317–325, Plenum Press, New York.

    Chapter  Google Scholar 

  18. Morgenstern, C., Höljes, U., Arnold, G., and Lochner, W. 1973. The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pfluegers Arch. 340:101–111.

    Article  CAS  Google Scholar 

  19. Poche, R., Arnold, G., and Gahlen, D. 1971. The influence of coronary perfusion pressure on metabolism and ultrastructure of the arrested aerobically perfused isolated guinea pig heart. Virchows Arch. B 8:252–266.

    CAS  Google Scholar 

  20. Walton, G. M., and Gill, G. N. 1976. Regulation of ternary (met-tRNAf-GTP-eukaryotic initiation factor 2) protein synthesis initiation complex formation by the adenylate energy charge. Biochem. Biophys. Acta 418:195–203.

    Article  PubMed  CAS  Google Scholar 

  21. Schreiber, S. S., Oratz, M., Rothschild, M. A., and Smith, D. 1977. Increased cardiac contractility in high calcium perfusion and protein synthesis. J. Mol. Cell. Cardiol. 9:661–669.

    Article  PubMed  CAS  Google Scholar 

  22. Dietrich, J. W., and Duffield, R. 1979. Effects of the calcium antagonist verapamil on in vitro synthesis of skeletal collagen and noncollagen protein. Endocrinology 105:1168–1171.

    Article  PubMed  CAS  Google Scholar 

  23. Kameyama, T., and Etlinger, J. D. 1979. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature (London) 279:344–346.

    Article  CAS  Google Scholar 

  24. Lewis, S. E. M., Anderson, P., and Goldspink, D. F. 1982. The effects of calcium on protein turnover in skeletal muscles of the rat. Biochem. J. 204:257–264.

    PubMed  CAS  Google Scholar 

  25. Sugden, P. H. 1980. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem. J. 190:593–603.

    PubMed  CAS  Google Scholar 

  26. Safer, B. 1983. 2B or not 2B: Regulation of the catalytic utilization of eIF-2. Cell 33:7–8.

    Article  PubMed  CAS  Google Scholar 

  27. Ochoa, S. 1983. Regulation of protein synthesis initiation in eukaryotes. Arch. Biochem. Biophys. 223:325–349.

    Article  PubMed  CAS  Google Scholar 

  28. Panniers, R., and Henshaw, E. C. 1983. A GDP/GTP exchange factor essential for eukaryotic initiation factor 2 cycling in Ehrlich ascites tumor cells and its regulation by eukaryotic initiation factor 2 phosphorylation. J. Biol. Chem. 258:7928–7934.

    PubMed  CAS  Google Scholar 

  29. Proud, C. G., and Pain, V. M. 1982. Purification and phosphorylation of initiation factor eIF-2 from rabbit skeletal muscle. FEBS Lett. 143:55–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gordon, E.E., Kira, Y., Morgan, H.E. (1985). Dependence of Protein Synthesis on Aortic Pressure and Calcium Availability. In: Harris, P., Poole-Wilson, P.A. (eds) Advances in Myocardiology. Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1287-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1287-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1289-6

  • Online ISBN: 978-1-4757-1287-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics