Skip to main content

The Problem of Neural Integration: Induced Rhythms and Short-Term Correlations

  • Chapter
Induced Rhythms in the Brain

Part of the book series: Brain Dynamics ((BD))

Abstract

Since the beginnings of neurophysiology and electroencephalography, various rhythmic patterns of brain activity have been recorded, differing in frequency, location, and relationship to behavior or cognitive activity. Recently, the cortical frequency band around 40 Hz (gamma range) has become a focus of attention (Bressler, 1990). To be sure, this band has already been studied in the past (cf. Sheer, 1970; Sheer and Grandstaff, 1970; Basşr, 1980); for instance, 40-Hz electroencephalogram (EEG) activity has been shown to be related to focused arousal (Sheer, 1976; Bouyer et al., 1981, 1987), and sensory (Galambos et al., 1981) as well as cognitive 40-Hz event-related potentials (ERPs) (Bauer and Jones, 1976; Spydell et al., 1985) have been widely examined. Rhythmic neuronal activity can show varying degrees of stimulus dependence. Ongoing background rhythms tend to be relatively independent of specific stimuli. By contrast, in stimulus-driven rhythms, temporal fluctuations of the neuronal activity are tightly locked to temporal fluctuations in the stimulus itself. What characterizes induced rhythms is that, although they are triggered by an external stimulus, their temporal structure is largely determined by interactions within the participating neuronal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M (1982): Local Cortical Circuits. Berlin: Springer-Verlag

    Book  Google Scholar 

  • Abeles M, Vaadia E, Bergman H (1990): Firing patterns of single units in the prefrontal cortex and neural network models. Network 1: 13–25

    Article  Google Scholar 

  • Allport DA (1968): Phenomenal simultaneity and the perceptual moment hypothesis. Br J Psychol 59: 395–406

    Article  Google Scholar 

  • Alonso A, Llinás RR (1989): Subthreshold Na+ -dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177

    Article  Google Scholar 

  • Ashby, WR (1956): An Introduction to Cybernetics. New York: Wiley

    Google Scholar 

  • Barlow HB (1981): Critical limit factors in the design of the eye and visual cortex. Proc R Soc Lond B 212:1–34

    Article  Google Scholar 

  • Basşr E (1980): EEG-Brain Dynamics. Amsterdam: Elsevier

    Google Scholar 

  • Bauer RH, Jones CN (1976): Feedback training of 36–44 EEG activity in visual cortex and hippocampus of cats: evidence for sensory and motor involvement. Physiol Behav 17: 885–890

    Article  Google Scholar 

  • Bergen JR, Julesz B (1983): Parallel versus serial processing in rapid pattern discrimination. Nature 303: 696–698

    Article  Google Scholar 

  • Biederman I, Mezzanotte RJ, Rabinowitz JC (1982): Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14: 143–177

    Article  Google Scholar 

  • Bindman LJ, Meyer T, Prince CA (1988): Comparison of the electrical properties of neocortical neurons in slices in vitro and in the anesthetised rat. Exp Brain Res 69: 489–496

    Article  Google Scholar 

  • Blumenthal, AL (1977): The process of cognition. Englewood Cliffs, N.J.: Prentice Hall

    Google Scholar 

  • Boring EG (1933): The Physical Dimensions of Consciousness. New York: Dover (reprinted 1963)

    Google Scholar 

  • Bouyer JJ, Montaron MF, Rougeul A (1981): Fast fronto-parietal rhythms during combined focused attentive behavior and immobility in cat: cortical and thalamic localizations. Electroencephalogr Clin Neurophysiol 51: 244–252

    Article  Google Scholar 

  • Bouyer JJ, Montaron MF, Vahnée JM, Albert MP, Rougeul A (1987): Anatomical localization of cortical beta rhythms in cat. Neuroscience 22: 863–869

    Article  Google Scholar 

  • Bressler SL (1990): The gamma wave: a cortical information carrier? Trends Neurosci 13:161–162

    Article  Google Scholar 

  • Bullock TH, McClune MC (1989): Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencphalogr Clin Neurophysiol 73: 479–498

    Article  Google Scholar 

  • Bush PC, Douglas RJ (1991): Synchronization of bursting action potential discharge in a model network of neocortical neurons. Neur Comput 3: 19–30

    Article  Google Scholar 

  • Caelli T (1985): Three processing characteristics of visual texture segmentation. Spatial Vision 1: 19–30

    Article  Google Scholar 

  • Chagnac-Amitai Y, Connors BW (1989): Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 62:1149–1162

    Google Scholar 

  • Damasio AR (1989): Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33: 25–62

    Article  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988): Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60: 121–130

    Article  Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989): A neural network for feature linking via synchronous activity: results from cat visual cortex and from simulations. In: Models of Brain Function, Cotterill RMJ, ed. Cambridge, UK: Cambridge University Press, pp 255–272

    Google Scholar 

  • Edelman GM (1978): Group selection and phasic re-entrant signalling: a theory of higher brain function. In: The Mindful Brain, Edelman GM, Mountcastle VB, eds. Cambridge, MA: MIT Press, pp 51–100

    Google Scholar 

  • Edelman GM (1987): Neural Darwinism. The Theory of Neuronal Group Selection. New York: Basic Books

    Google Scholar 

  • Edelman GM (1989): The Remembered Present. A Biological Theory of Consciousness. New York: Basic Books

    Google Scholar 

  • Efron R (1970): The minimum duration of a perception. Neuropsychologia 8: 57–63

    Article  Google Scholar 

  • Engel AK, König P, Gray CM, Singer W (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: II. Inter-columnar interaction as determined by crosscorrelation analysis. Eur J Neurosci 2: 588–606

    Article  Google Scholar 

  • Engel AK, König P, Kreiter A, Gray CM, Singer W (1991): Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim, FRG: VCH, pp 3–25

    Google Scholar 

  • Finkel LH, Edelman GM (1989): The integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas. J Neurosci 9: 3188–3208

    Google Scholar 

  • Freeman WJ, Skarda CA (1985): Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res Rev 10: 147–175

    Article  Google Scholar 

  • Freeman WJ, van Dijk BW (1987): Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res 422: 267–276

    Article  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981): A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78: 2643–2647

    Article  Google Scholar 

  • Gerstein G (1970): Functional associations of neurons: detection and interpretation. In: The Neurosciences. Second Study Program, Schmitt FO, ed. New York: The Rockefeller University Press, pp 648–671

    Google Scholar 

  • Gilbert CD, Wiesel TN (1989): Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9: 2432–2442

    Google Scholar 

  • Gray CM, Engel AK, König P, Singer W (1990a): Stimulus-dependent neuronal oscillations in cat visual cortex: I. Receptive field properties and feature dependence. Eur J Neurosci 2: 607–619

    Article  Google Scholar 

  • Gray CM, Engel AK, König P, Singer W (1991): Temporal properties of synchronous oscillatory neuronal interactions in cat striate cortex. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim, FRG: VCH, pp 27–55

    Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337

    Article  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1990b): Synchronization of oscillatory responses in visual cortex: a plausible mechanism for scene segmentation. In: Synergetics of Cognition, Haken H, ed. Berlin: Springer, pp 82–98

    Chapter  Google Scholar 

  • Gray CM, Singer W (1987): Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abst 13: 1449

    Google Scholar 

  • Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702

    Article  Google Scholar 

  • Grossberg S, Mingolla E (1985): Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept Psychophy 38:141–171

    Article  Google Scholar 

  • Henle M (1971): The Selected Papers of Wolfgang Köhler. New York: Liveright.

    Google Scholar 

  • James W (1890): The Principles of Psychology. New York: Dover (reprinted 1950)

    Book  Google Scholar 

  • Jones EG, Powell TPS (1970): An antomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820

    Article  Google Scholar 

  • Kammen DM, Holmes PJ, Koch C (1989): Cortical architecture and oscillations in neuronal networks: feedback versus local coupling. In: Models of Brain Function, Cotterill RMJ, ed. Cambridge, UK: Cambridge University Press, pp 273–284

    Google Scholar 

  • Kienker PK, Sejnowski TJ, Hinton GE, Schumacher LE (1986): Separating figure from ground with a parallel network. Perception 15: 197–216

    Article  Google Scholar 

  • Koffka K (1935): Principles of Gestalt Psychology. New York: Harcourt

    Google Scholar 

  • Köhler W (1947): Gestalt Psychology. New York: Liveright

    Google Scholar 

  • Levy WB, Steward O (1983): Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8: 791–797

    Article  Google Scholar 

  • Libet B (1978): Neuronal vs. subjective timing for a conscious sensory experience. In: Cerebral Correlates of Conscious Experience, Buser PA, Rougeul-Buser A, eds. Amsterdam: North-Holland, pp 69–82

    Google Scholar 

  • Lichtenstein M (1961): Phenomenal simultaneity with irregular timing of components of the visual stimulus. Percept Motor Skills 12: 47–60

    Article  Google Scholar 

  • Livingstone MS, Hubel DH (1987): Psychophysical evidence for separate channels for the perception of form, color, movement and depth. J Neurosci 7: 3416–3468

    Google Scholar 

  • Llinás RR (1990): Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neuroscience Award Lectures, vol 4. Raven Press: New York, pp 175–194

    Google Scholar 

  • Luhmann HJ, Greuel JM, Singer W (1990a): Horizontal interactions in cat striate cortex: I: Anatomical substrate and postnatal development. Eur J Neurosci 2: 344–357

    Article  Google Scholar 

  • Lux HD, Pollen DA (1966): Electrical constants of neurons in the motor cortex of the cat. J Neurophysiol 29: 207–220

    Google Scholar 

  • Melssen WJ, Epping WJM (1987): Detection and estimation of neural connectivity based on crosscorrelation analysis. Biol Cybern 57:403–414

    Article  Google Scholar 

  • Moore GP, Segundo JP, Perkel DH, Levitan H (1970): Statistical signs of synaptic interaction in neurons. Biophys J 10: 876–900

    Article  Google Scholar 

  • Nakayama K, Silverman GH (1986): Serial and parallel processing of visual feature conjunctions. Nature 320: 264–265

    Article  Google Scholar 

  • Palm G, Aertsen AMHJ, Gerstein GL (1988): On the significance of correlations among neuronal spike trains. Biol Cybern 59: 1–11

    Article  Google Scholar 

  • Pearson JC, Finkel LH, Edelman GM (1987): Plasticity in the organization of adult cortical maps: a computer model based on neuronal group selection. J Neurosci 7: 4209–4223

    Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967a): Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys J 7: 391–418

    Article  Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967b): Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7:419–440

    Article  Google Scholar 

  • Pöppel E (1985): Grenzen des Bewusstseins. Über Wirklichkeit und Welterfahrung. Stuttgart, FRG: Deutsche Verlags Anstalt, English edition (1988): Mindworks. Time and Conscious Experience. Orlando, FL: Academic Press

    Google Scholar 

  • Pöppel E (1970): Excitability cycles in central intermittency. Psychol Forschung, 34: 1–9

    Article  Google Scholar 

  • Pöppel E, Logothetis N (1986): Neuronal oscillations in the human brain. Naturwissenschaften 73: 267–268

    Article  Google Scholar 

  • Reeke G Jr, Finkel LH, Sporns O, Edelman GM (1990): Synthetic neural modeling: a multilevel approach to the analysis of brain complexity. In: Signal and Sense: Local and Global Order in Perceptual Maps, Edelman GM, Gall WE, Cowan WM, eds. New York: Wiley, pp 607–707

    Google Scholar 

  • Richet C (1898): Forme et duree de la vibration nerveuse et l’unité psychologique de temps. Revue Philosophique de la France et de l’Etranger 45: 337–350

    Google Scholar 

  • Schillen TB, König P (1990): Coherency detection by coupled oscillatory responses — synchronizing connections in neural oscillator layers. In: Parallel Processing in Neural Systems and Computers, Eckmiller G, Hartmann R, Hauske G, eds. Amsterdam: Elsevier, pp 139–142

    Google Scholar 

  • Schrödinger E (1958): Mind and Matter. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Serviere J, Miceli D, Galifret Y (1977): A psychophysical study of the visual perception of “instantaneous” and “durable.” Vision Res 17: 57–63

    Article  Google Scholar 

  • Sheer DE (1970): Electrophysiological correlates of memory consolidation. In: Molecular Mechanisms in Memory and Learning, Ungar G ed. New York: Plenum Press, pp 177–211

    Google Scholar 

  • Sheer DE (1976): Focused arousal and 40-Hz EEG. In: The Neuropsychology of Learning Disorders, Knight RM, Bakker DJ, eds. Baltimore: University Park Press, pp 71–87

    Google Scholar 

  • Sheer DE, Grandstaff N (1970): Computer-analysis of electrical activity in the brain and its relation to behavior. In: Current Research in Neurosciences: Topical Problems in Psychiatry and Neurology, vol 10, Wycis HT, ed. Basel: Karger, pp 160–172

    Google Scholar 

  • Sherrington C (1906, 1947): The Integrative Action of the Nervous System, 1 st and 2nd eds. New Haven: Yale University Press

    Google Scholar 

  • Singer W (1985): Activity-dependent self-organization of the mammalian visual cortex. In: Models of the Visual Cortex, Rose D, Dobson VG, eds. London: Wiley, pp 123–136

    Google Scholar 

  • Sompolinsky H, Golomb D, Kleinfeld D (1990): Global processing of visual stimuli in a network of coupled oscillators. Proc Natl Acad Sci USA 87: 7200–7204

    Article  Google Scholar 

  • Sporns O, Gally JA, Reeke GN Jr, Edelman GM (1989): Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci USA 86: 7265–7269

    Article  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (1990): Coherent oscillations in a populationbased model: their role in visual perception. Soc Neurosci Abst 16: 961

    Google Scholar 

  • Sporns O, Tononi G, Edelman GM (1991a): Dynamic interactions of neuronal groups and cortical integration. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed Weinheim, FRG: VCH, pp 205–240

    Google Scholar 

  • Sporns O, Tononi G, Edelman GM (1991b): Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proc Natl Acad Sci USA 88: 129–133

    Article  Google Scholar 

  • Spydell JD, Pattee G, Golde WD (1985): The 40 Hz event-related potential: normal values and effects of lesions. Elearoencephalogr Clin Neurophysiol 62: 193–202

    Article  Google Scholar 

  • Stroud JM (1955): The fine structure of psychological time. In: Information Theory in Psychology, Quastler H, ed. Glencoe, IL: Free Press

    Google Scholar 

  • Stryker MP (1989): Is grandmother an oscillation? Nature 338: 297–298

    Article  Google Scholar 

  • Symonds LL, Rosenquist AC (1984): Laminar origins of visual corticocortical connections in the cat. J Comp Neurol 229: 39–47

    Article  Google Scholar 

  • Treisman A (1988): Features and objects: the fourteenth Bartlett Memorial Lecture. Q J Exp Psychol 40A: 201–237

    Google Scholar 

  • Treisman A, Gelade G (1980): A feature-integration theory of attention. Cogn Neuropsychol 12: 97–136

    Google Scholar 

  • Uttal WR (1981): A Taxonomy of Visual Processes. Hillsdale, NJ: Lawrence Erlbaum

    Google Scholar 

  • Van Essen DC (1985): Functional organization of primate visual cortex. In: Cerebral Cortex, Vol. 3, Visual Cortex, Peters A, Jones EG, eds. New York: Plenum Press, pp 259–329

    Google Scholar 

  • Van Essen DC, Maunsell JHR (1983): Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6: 370–375

    Article  Google Scholar 

  • von der Malsburg C, Schneider W (1986): A neural cocktail-party processor. Biol Cybern 54: 29–40

    Article  Google Scholar 

  • Vaadia E, Ahissar E, Bergman H, Lavner Y (1991): Correlated activity of neurons: a neural code for higher brain functions? In: Neuronal Cooperativity Krüger J, ed. Berlin: Springer pp 249–279

    Chapter  Google Scholar 

  • Wertheimer M (1923): Untersuchungen zur Lehre von der Gestalt II. Psychol Forsch 4:301–350

    Article  Google Scholar 

  • Zeki S (1969): Representation of central visual fields in prestriate cortex of monkey. Brain Res 14: 271–291

    Article  Google Scholar 

  • Zeki S (1978): Functional specialization in the visual cortex of the rhesus monkey. Nature 274: 423–428

    Article  Google Scholar 

  • Zeki S, Shipp S (1988): The functional logic of cortical connections. Nature 335:311–317

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tononi, G., Sporns, O., Edelman, G.M. (1992). The Problem of Neural Integration: Induced Rhythms and Short-Term Correlations. In: Başar, E., Bullock, T.H. (eds) Induced Rhythms in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1281-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1281-0_21

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1283-4

  • Online ISBN: 978-1-4757-1281-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics