Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 34))

  • 229 Accesses

Abstract

Normal function of the heart depends on an adequate coronary blood flow. Myocardial metabolism and coronary flow are mutually interactive so that any increase in the metabolism of the normal heart is matched by an increase in coronary blood flow, and any significant restriction of flow in pathophysiologic states results in the reduction of myocardial metabolism and cardiac performance. In this chapter we describe the determinants of coronary blood flow; these include physical factors, myocardial metabolism, humoral influences, and neural control. In addition, we discuss certain pathophysiologic conditions, such as vascular responses to cardiac hypertrophy and myocardial ischemia, and the significance of coronary collateral vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman JIE: The effect of intramyocardial forces on the distribution of intramyocardial blood flow. J Biomed Eng 1: 33–40, 1979.

    Article  PubMed  CAS  Google Scholar 

  2. Berne RM, Rubio R: Coronary circulation. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology. Vol 1, sect 2: The cardiovascular system. Bethesda MD: American Physiological Society, 1979, pp 873–952.

    Google Scholar 

  3. Braunwald E, Ross J Jr, Sonnenblick EH: Myocardial hypoxia and ischemia. In: Mechanisms of contraction of the normal and failing heart. Boston: Little, Brown and Company, 1976, pp 357–397.

    Google Scholar 

  4. Bell JR, Fox AC: Pathogenesis of subendocardial ischemia. Am J Med Sci 268: 2–13, 1974.

    Article  Google Scholar 

  5. Moir TW: Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ Res 30: 621–624, 1972.

    Article  PubMed  CAS  Google Scholar 

  6. Hoffman JIE, Buckberg GD: Transmural variations in myocardial perfusion. In: Yu PN, Goodwin JF (eds) Progress in cardiology, vol 5. Philadelphia: Lea and Febiger, 1976, pp 37–89.

    Google Scholar 

  7. Buckberg GD, Fixler DE, Archie JP, Hoffman JIE: Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 30: 67–81, 1972.

    Article  PubMed  CAS  Google Scholar 

  8. Griggs DM Jr, Chen CC: Coronary hemodynamics and regional myocardial metabolism in experimental aortic insufficiency. J Clin Invest 53: 1599 1606, 1974.

    Google Scholar 

  9. Bellamy RF: Diastolic coronary artery pressure flow relations in the dog. Circ Res 43: 92–101, 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Permutt S, Riley RL: Haemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol 18: 924–932, 1963.

    PubMed  CAS  Google Scholar 

  11. Bellamy RF: Calculation of coronary vascular resistance. Cardiovasc Res 14: 261–269, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Sherman IA, Grayson J, Bayliss CE: Critical closing and critical opening phenomena in the coronary. Am J Physiol 238: H533–558, 1980.

    PubMed  CAS  Google Scholar 

  13. Grayson J, Parratt JR: A species comparison of the effects of changing perfusion pressure on blood flow and metabolic heat production in the myocardium. J Physiol (Lond) 187: 465–488, 1966.

    CAS  Google Scholar 

  14. Archie JP, Brown R: Effect of preload on the trans-mural distribution of diastolic coronary blood flow. J Surg Res 16: 215–223, 1974.

    Article  PubMed  Google Scholar 

  15. Ellis AK, Kiocke FJ: Effects of preload on the transmural distribution of perfusion and pressure—flow relationships in the canine coronary vascular bed. Cir Res 46: 68–77, 1979.

    Article  Google Scholar 

  16. Panerai RB, Chamberlain JH, Sayers BM: Characterization of the extravascular component of coronary resistance by instantaneous pressure—flow relationships in the dog. Circ Res 45: 378–390, 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Downey JM, Kirk ES: Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36: 753–760, 1975.

    Article  PubMed  CAS  Google Scholar 

  18. Munch DF, Downey JM: Prediction of regional myocardial blood flow in dogs. Am J Physiol 239: H308–315, 1980.

    PubMed  CAS  Google Scholar 

  19. Bellamy RF, Lowensohn HS: Effect of systole on coronary pressure—flow relations in the right ventricle of the dog. Am J Physiol 238: H481–486, 1980.

    PubMed  CAS  Google Scholar 

  20. Bellamy RF, Lowensohn HS, Ehrlich W, Baer RW: Effect of coronary sinus occlusion on coronary pressure—flow relations. Am. J Physiol 239: H57–64. 1980.

    PubMed  CAS  Google Scholar 

  21. Stein Pd, Marzilli M, Sabbah HN, Lee T: Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol 238: H625–630, 1980.

    Google Scholar 

  22. Downey JM, Kirk ES: Distribution of coronary blood flow across the canine heart during systole. Circ Res 34: 251–257, 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Hess DS, Bache RJ: Transmural distribution of myocardial blood flow during systole in the awake dog. Circ Res 38: 5–15, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Hess DS, Bache RJ: Transmural right ventricular myocardial blood flow during systole in the awake dog. Circ Res 45: 88–94, 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Marzilli M, Goldstein S, Sabbah NN, Lee T, Stein PD: Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ Res 45: 634–641, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. Raff WK, Kosche F, Lochner W: Coronary extra-vascular resistance and increase of maximal rate of intraventricular pressure rise by isoproterenol Pflug-ers Arch 325: 323–333, 1971.

    CAS  Google Scholar 

  27. Raff WK, Kosche F, Lochner W: Extravascular cor-onary resistance and its relation to the microcirculation. AM J Cardiol 29: 598–603, 1972.

    Article  PubMed  CAS  Google Scholar 

  28. Raff WK, Kosche F, Goebel H, Lochner W: Coronary extravascular resistance at increasing left ventricular pressure. Pflugers Arch 333: 352–361, 1972.

    Article  PubMed  CAS  Google Scholar 

  29. Snyder R, Downey JM, Kirk ES: The active and passive components of extravascular coronary resistance. Cardiovasc Res 9: 1–6, 1975.

    Article  Google Scholar 

  30. Trimble J, Downey J: Contribution of myocardial contractility to myocardial perfusion. Am J Physiol 236: H121–126, 1979.

    PubMed  CAS  Google Scholar 

  31. Raff WK, Kosche F, Lochner W: Heart rate and coronary extravascular resistance. Pflugers Arch 323: 241–249, 1971.

    Article  PubMed  CAS  Google Scholar 

  32. Bache RJ, Cobb FR: Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 41: 648653, 1977.

    Google Scholar 

  33. Domenech RJ, Goich J: Effect of heart rate on regional coronary blood flow. Cardiovasc Res 10: 224231, 1976.

    Google Scholar 

  34. Downey JM, Downey HF, Kirk ES: Effect of myocardial strain on coronary blood flow. Circ Res 34: 286–292, 1974.

    Article  PubMed  CAS  Google Scholar 

  35. Fenton TR, Cherry JM, Klassen GA: Transmutai myocardial deformation in canine left ventricular wall. Am J Physiol 235: H523–530, 1978.

    PubMed  CAS  Google Scholar 

  36. Feigl EO, Fry DL: Intramural myocardial shear during the cardiac cycle. Circ Res 14: 536–540, 1964.

    Article  PubMed  CAS  Google Scholar 

  37. Surjadhana A, Rouleau J, Boerboom L, Hoffman JIE: Myocardial blood flow and its distribution in anesthetized polycythemic dogs. Circ Res 43: 619631, 1978.

    Google Scholar 

  38. Jan K-M, Chien S: Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol 233: H106–113, 1977.

    PubMed  CAS  Google Scholar 

  39. Moret P, Covarrubias E, Coudert J, Duchosal F: Cardiocirculatory adaptation to chronic hypoxia: comparative study of coronary flow, myocardial oxygen consumption, and efficiency between sea level and high altitude residents. Acta Cardiol 27: 283305, 1972.

    Google Scholar 

  40. Jan K-M, Heldman J, Chien S: Coronary hemodynamics and oxygen utilization after hematocrit variations in hemorrhage. Am J Physiol 239: H326332, 1980.

    Google Scholar 

  41. Holtz J, Bassenge E, Von Restorff W, Mayer E: Transmural differences in myocardial blood flow and in coronary dilatory capacity in hemodiluted conscious dogs. Basic Res Cardiol 71: 36–46, 1977.

    Article  Google Scholar 

  42. Harlan DM, Rooke TW, Belloni FL, Sparks HV: Effect of indomethacin on coronary vascular response to increased myocardial oxygen consumption. Am J Physiol 235: H372–378, 1978.

    PubMed  CAS  Google Scholar 

  43. Coffman JD, Gregg DE: Reactive hyperemia characteristics of the myocardium. Am J Physiol 199: 1143–1149, 1960.

    PubMed  CAS  Google Scholar 

  44. Khouri EM, Gregg ED, Lowensohn HS: Flow in the major branches of the left coronary artery during experimental coronary insufficiency in the anesthetized dog. Circ Res 23: 99–109, 1968.

    Article  PubMed  CAS  Google Scholar 

  45. Olsson RA, Gregg DE: Myocardial reactive hyperemia in the unanesthetized dog. Am J Physiol 208: 224–230, 1965.

    PubMed  CAS  Google Scholar 

  46. Johnson PC: The myogenic response. In: Bohr DF, Somlyo SR, Sparks HV (eds) Handbook of physiology. Vol 2, sect 2: The cardiovascular system. Bethesda MD: American Physiological Society, 1980, pp 409–442.

    Google Scholar 

  47. Eikens E, Wilcken DEL: Myocardial reactive hyperemia and coronary vascular reactivity in the dog. Circ Res 33: 267–274, 1973.

    Article  PubMed  CAS  Google Scholar 

  48. Eikens E, Wilcken DEL: Reactive hyperemia in the dog heart: effects of temporarily restricting arterial inflow and of coronary occlusions lasting one and two cardiac cycles. Circ Res 35: 702–712, 1974.

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz GG, McHale PA, Greenfield GG: Hyperemic response of the coronary circulation to brief diastolic occlusion in the conscious dog. Circ Res 50: 28–37, 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Scott JB, Radawski D: Role of hyperosmolarity in the genesis of active and reactive hyperemia. Circ Res (Suppl 1 ) 28: 126–32, 1971.

    Google Scholar 

  51. Murray PA, Belloni FL, Sparks HV: The role of potassium in the metbolic control of coronary vascular resistance of the dog. Circ Res 44: 767–780, 1979.

    Article  PubMed  CAS  Google Scholar 

  52. Bunger R, Haddy FJ, Querengasser A, Gerlach E: Studies on potassium induced coronary dilation in the isolated guinea pig heart. Pflugers Arch 63: 2731, 1976.

    Google Scholar 

  53. Winbury MM, Howe BB, Weiss HR: Effect of nitroglycerin and dipyridamole on epicardial and endocardial oxygen tension: further evidence for redistribution of myocardial blood flow. J Pharmacol Exp Ther 176: 184–199, 1971.

    PubMed  CAS  Google Scholar 

  54. Sparks HV: Effect of local metabolic factors on vascular smooth muscle. In: Bohr DF, Somlyo SR, Sparks HV (eds) Handbook of physiology. Vol 2, sect 2: The cardiovascular system. Bethesda MD: American Physiological Society, 1980, pp 475513.

    Google Scholar 

  55. Duling BR: Microvascular responses to alterations in oxygen tension. Circ Res 31: 481–489, 1972.

    Article  PubMed  CAS  Google Scholar 

  56. Duling BR, Pittman RN: Oxygen tension: dependent or independent variable in local control of blood flow? Fed Proc 34: 2020–2024, 1975.

    Google Scholar 

  57. Gellai M, Detar R: Evidence in support of hypoxia but against high K+ and hyperosmolality as possible mediators of sustained vasodilation in rabbit cardiac and skeletal muscle. Circ Res 35: 681–691, 1974.

    Article  PubMed  CAS  Google Scholar 

  58. Coburn RF, Ploegmakers F, Gondrie P, Abboud R: Myocardial myoglobin oxygen tension. Am J Physiol 224: 870–876, 1973.

    PubMed  CAS  Google Scholar 

  59. Kalsner S: Intrinsic prostaglandin release: a mediator of anoxia-induced relaxation in an isolated coronary artery preparation. Blood Vessels 13: 155166, 1976.

    Google Scholar 

  60. McNeil TA: Venous oxygen saturation and blood flow during reactive hyperemia in the human forearm. J Physiol (Load) 134: 195–201, 1956.

    Google Scholar 

  61. Alexander RW, Kent KM, Pisano JJ, Keiser HR, Cooper T: Regulation of postocclusive hyperemia by endogenously synthesized prostaglandins in the dog heart. J Clin Invest 55: 1174–1181, 1975.

    Article  PubMed  CAS  Google Scholar 

  62. Needleman P, Iskson PC: Intrinsic prostaglandin biosynthesis in blood vessels. In: Bohr DF, Somlyo SR, Sparks HV (eds) Handbook of physiology. Vol 2, sect 2: The cardiovascular system. Bethesda MD: American Physiological Society, 1980, pp 613–633.

    Google Scholar 

  63. Owen TL, Ehrhart IC, Weidner WJ, Scott JB, Haddy FJ: Effects of indomethacin on local blood flow regulation in canine heart and kidney. Proc Soc Exp Biol Med 149: 871–876, 1975.

    PubMed  CAS  Google Scholar 

  64. Hintze TH, Kaley G: Prostaglandins and the control of blood flow in the canine myocardium. Circ Res 40: 313–320, 1977.

    Article  PubMed  CAS  Google Scholar 

  65. Giles RW, Wilcken DEL: Reactive hyperemia in the dog heart: inter-relations between adenosine, ATP, and aminophylline and the effect of indomethacin. Cardiovasc Res 11: 113–121, 1977.

    Article  PubMed  CAS  Google Scholar 

  66. Rubio R, Berne RM, Katori M: Release of adenosine in reactive hyperemia of the dog heart. Am J Physiol 216: 56–62, 1969.

    PubMed  CAS  Google Scholar 

  67. Olsson RA: Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circ Res 26: 301–306, 1970.

    Article  PubMed  CAS  Google Scholar 

  68. Schrader J, Haddy FJ, Gerlach E: Release of adenosine, inosine, and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflugers Arch 369: 16, 1977.

    Google Scholar 

  69. Olsson RA, Snow JA, Gentry MK: Adenosine metabolism in canine myocardial reactive hyperemia. Circ Res 42: 358–362, 1978.

    Article  PubMed  CAS  Google Scholar 

  70. Curnish RR, Berne RM, Rubio R: Effect of aminophylline on myocardial reactive hyperemia. Proc Soc Exp Biol Med 141: 593–598, 1972.

    PubMed  CAS  Google Scholar 

  71. Schutz W, Zimpfer M, Raberger G: Effect of aminophylline on coronary reactive hyperemia following brief and long occlusion periods. Cardiovasc Res 11: 507–511, 1977.

    Article  PubMed  CAS  Google Scholar 

  72. Juhran W, Voss EM, Dietmann K, Schaumann W: Pharmacologic effects on coronary reactive hyperemia in conscious dogs. Naunyn Schmiedbergs Arch Pharmacol 269: 32–47, 1971.

    Article  CAS  Google Scholar 

  73. Bittar N, Pauly TJ: Myocardial reactive hyperemia responses in the dog after aminophylline and lidoflazine. Am J Physiol 220: 812–815, 1971.

    PubMed  CAS  Google Scholar 

  74. Saito D, Seinhart CR, Nixon DG, Olsson RA: Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ Res 49: 1262 1267, 1981.

    Google Scholar 

  75. Haddy FJ, Scott JB: Metabolic factors in peripheral circulatory regulation. Fed Proc 34: 2006–2011, 1975.

    PubMed  CAS  Google Scholar 

  76. Samuelsson B, Paoletti R (eds): Leukotrienes and other lipoxygenase products. Adv Prostaglandin Thromboxane Leukotriene Res 9, 1982.

    Google Scholar 

  77. Mosher P, Ross J, McFate PA, Shaw RF: Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14: 250–259, 1964.

    Article  PubMed  CAS  Google Scholar 

  78. Shaw RF, Mosher P, Ross J, Joseph JI, Lee ASJ: Physiologic principles of coronary perfusion. J Thorac Cardiovasc Surg 44: 608–616, 1962.

    PubMed  CAS  Google Scholar 

  79. Gorman MG, Sparks HV: Unpublished observations.

    Google Scholar 

  80. Rouleau J, Boerboom LE, Surjadhana A, Hoffman JIE: The role of autoregulation and tissue diastolic pressures in the transmural distribution of left ventricular blood flow in anesthetized dogs. Circ Res 45: 804–815, 1979.

    Article  PubMed  CAS  Google Scholar 

  81. Boatwright RB, Downey HF, Bashour FA, Crystal GJ: Transmural variation in autoregulation of coronary blood flow in hyperperfused canine myocardium. Circ Res 47: 599–609, 1980.

    Article  PubMed  CAS  Google Scholar 

  82. Rubio R, Berne RM: Regulation of coronary blood flow. Prog Cardiovasc Dis 18: 105–122, 1975.

    Article  PubMed  CAS  Google Scholar 

  83. Mohrman DE, Feigel EO: Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res 42: 79–86, 1977.

    Article  Google Scholar 

  84. Britton S, Di Salvo J: Effects of angiotensin I and angiotensin II on hindlimb and coronary vascular resistance. Am J Physiol 225: 1226–1231, 973.

    Google Scholar 

  85. Cohen MV, Kirk ES: Differential response of large and small coronary arteries to nitroglycerin and angiotensin: autoregulation and tachyphylaxis. Circ Res 33: 445–453, 1973.

    Article  PubMed  CAS  Google Scholar 

  86. Green HD, Kepchar JH: Control of peripheral resistance in major systemic vascular beds. Physiol Rev 39: 617–686, 1959.

    PubMed  CAS  Google Scholar 

  87. Case RB, Felix A, Wachter M, Kyriakidis G, Castellana F: Relative effect of CO2 on canine coronary vascular resistance. Circ Res 42: 410–418, 1978.

    Article  PubMed  CAS  Google Scholar 

  88. Case RB, Greenberg H: The response of canine coronary vascular resistance to local alterations in coronary arterial pCO2. Circ Res 42: 410–418, 1978.

    Article  PubMed  CAS  Google Scholar 

  89. Case RB, Greenberg H, Moskowitz R: Alterations in coronary sinus p02 and 02 saturation resulting from pCO2 changes. Cardiovasc Res 9: 167–177, 1975.

    Article  PubMed  CAS  Google Scholar 

  90. Rooke T, Sparks HV: Arterial CO2 myocardial consumption, and coronary blood flow in the dog. Circ Res 47: 217–225, 1980.

    Article  PubMed  CAS  Google Scholar 

  91. Wiedmeier VT, Spell LH: Effects of catecholamines, histamine and nitroglycerin on flow, oxygen consumption and coronary blood flow during stellate ganglia stimulation. Circ Res 45: 708–718, 1979.

    Article  Google Scholar 

  92. Raberger G, Weissel M, Kraupp O: The dependence of the effects of intracoronary administered adenosine and of coronary conductance on the arterial pH, pCO2, and buffer capacity in dogs. Naunyn Schmiedebergs Arch Pharmacol 271:; 301–310, 1971.

    Google Scholar 

  93. Merrill GF, Haddy FJ, Dabney JM: Adenosine, theophylline, and perfusate pH in the isolated, per-fused guinea pig heart. Circ Res 42: 225–229, 1978.

    Article  PubMed  CAS  Google Scholar 

  94. Kittle CF, Aoki H, Brown E: The role of pH and CO2 in the distribution of blood flow. Surgery 57: 139–154, 1965.

    PubMed  CAS  Google Scholar 

  95. Tarnow J, Bruckner JB, Eberlein HJ, Gethmann JW, Hess W, Patschke D, Wilde J: Blood pH and PaCO2 as chemical factors in myocardial blood flow control. Basic Res Cardiol 70: 685–696, 1975.

    Article  PubMed  CAS  Google Scholar 

  96. Gilmore JP, Nizolek JA, Jacob RJ: Further characterization of myocardial K+ loss induced by changing contraction frequency. Am J Physiol 221: 465–469, 1971.

    PubMed  CAS  Google Scholar 

  97. Sybers HD, Helmer PR, Murphy QR: Effects of hypoxia on myocardial potassium balance. Am J Physiol 220: 2047–2050, 1971.

    PubMed  CAS  Google Scholar 

  98. Frick GP, Lowenstein JM: Studies of 5’-nucleotidase in the perfused rat heart: including measurements of the enzyme in perfused skeletal muscle and liver. J Biol Chem 251: 6372–6378, 1976.

    PubMed  CAS  Google Scholar 

  99. Schutz W, Shrader J, Gerlach E: Different sites of adenosine formation in the heart. Am J Physiol 240: H963–970, 1981.

    PubMed  CAS  Google Scholar 

  100. Kukovitz WR, Poch G: Inhibition of hypoxia-induced rise in adenosine release and flow by coronary dilators. Cardiology 56:107–113, 1971/1972.

    Google Scholar 

  101. Schrader J, Schutz W, Bardenheuer H: Role of Sadenosylhomocysteine hydrolase in adenosine metabolism in mammalian heart. Biochem J 196: 6570, 1981.

    Google Scholar 

  102. Olsson RA, Saito D, Steinhart CR: Compartmentalization of the adenosine pool of dog and rat hearts. Circ Res 50: 617–626, 1982.

    Article  PubMed  CAS  Google Scholar 

  103. Schrader J, Gerlach E: Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflugers Arch 367: 129–135, 1976.

    Article  PubMed  CAS  Google Scholar 

  104. Miller WL, Belardinelli L, Bacchus A, Foley DH, Rubio R, Berne RM: Canine myocardial adenosine and lactate production, oxygen consumption and coronary blood flow during stellate ganglia stimulation. Circ Res 45: 708–7 18, 1979.

    Google Scholar 

  105. Watkinson WP, Foley DH, Rubio R, Berne RM: Myocardial adenosine formation with increased cardiac performance in the dog. Am J Physiol 5: H1321, 1979.

    Google Scholar 

  106. Degenring FH: Cardiac nucleotides and coronary flow during changes of cardiac inotrophy. Basic Res Cardiol 71: 291–296, 1976.

    Article  CAS  Google Scholar 

  107. Foley DH, Herlihy JT, Thompson CI, Rubio R, Berne RM: Increased adenosine formation by rat myocardium with acute aortic constriction. J Mol Cell Cardiol 10: 293–300, 1978.

    Article  PubMed  CAS  Google Scholar 

  108. McKenzie JE, McCoy FP, Bockman EL: Myocardial adenosine and coronary resistance during increased cardiac performance. Am J Physiol 8:HSO9–515, 1980.

    Google Scholar 

  109. Jones CE, Hurst TW, Randall JR: Effect of aminophylline on coronary functional hyperemia and myocardial adenosine. Am J Physiol 243: H480487, 1982.

    Google Scholar 

  110. Manfredi JP, Sparks HV: Adenosine’s role in coronary vasodilation induced by atrial pacing and nor-epinephrine. Am J Physiol 243: H536–545, 1982.

    PubMed  CAS  Google Scholar 

  111. DeWitt DF, Wangler RD, Thompson CI, Sparks HV: Phasic release of adenosine during steady state metabolic stimulation in the isolated guinea pig heart. Circ Res 53: 636–643, 1983.

    Article  PubMed  CAS  Google Scholar 

  112. McKenzie JE, Steffan RP, Price RB, Haddy FJ: Effect of theophylline on adenosine and coronary vascular resistance during increased cardiac work. Physiologist 24: 26, 1981.

    Google Scholar 

  113. Nees S, Gerbes AL, Willershausen-Zonnchen B, Gerlach E: Purine metabolism in cultured endothelial cells. Adv Exp Med Biol 122: 25–30, 1980.

    Article  Google Scholar 

  114. Randall WC, Armour JA: Gross and microscopic anatomy of the cardiac innervation. In: Randall WC (ed) Neural regulation of the heart. New York: Oxford University, 1977, pp 13–41.

    Google Scholar 

  115. Armour JA, Randall WC: Functional anatomy of canine cardiac fibers. Acta Anat 91: 510–528, 1975.

    Article  PubMed  CAS  Google Scholar 

  116. Denn MJ, Stone HL: Autonomic innervation of dog coronary arteries. J Appl Physiol 41: 30–35, 1976.

    PubMed  CAS  Google Scholar 

  117. Dolezel S, Gerova J, Gero J, Sladek T, Vasku J: Adrenergic innervation of the coronary arteries and the myocardium. Acta Anat 100: 306–316, 1978.

    Article  PubMed  CAS  Google Scholar 

  118. Schenk EA, Badawi AE: Dual innervation of arteries and arterioles: histochemical study. Z Zellforsch Mikrosk Anat 91: 170–177, 1968.

    Article  PubMed  CAS  Google Scholar 

  119. Ross G: Adrenergic responses of the coronary vessels. Circ Res 39: 461–465, 1976.

    Article  PubMed  CAS  Google Scholar 

  120. Parratt JR: Effects of adrenergic activators and inhibitors on the coronary circulation. In: Szekeres L (ed) Handbook of experimental pharmacology. Vol 54, part 1: Adrenergic activators and inhibitors. Berlin: Springer-Verlag, 1980, pp 735–822.

    Chapter  Google Scholar 

  121. McRaven DR, Mark AL, Abboud FM, Mayer HE: Responses of coronary vessels to adrenergic stimuli. J Clin Invest 50: 773–778, 1971.

    Article  PubMed  CAS  Google Scholar 

  122. Ek L, Ablad B: Effects of three beta adrenergic receptor blockers on myocardial oxygen consumption in the dog. Eur J Pharmacol 14: 19–28, 1971.

    Article  PubMed  CAS  Google Scholar 

  123. Uchida Y, Murao S: Sustained decrease in coronary blood flow and excitation of cardiac sensory fibers following sympathetic stimulation. Jpn Heart J 16: 265–279, 1975.

    Article  PubMed  CAS  Google Scholar 

  124. Mark AL, Abboud FM, Schmid PG, Heistad DD, Mayer HE: Differences in direct effects of adrenergic stimuli on coronary, cutaneous and muscular vessels. J Clin Invest 51: 279–287, 1972.

    Article  PubMed  CAS  Google Scholar 

  125. Hamilton FN, Feigl EO: Coronary vascular sympathetic beta-receptor innervation. Am J Physiol 230: 1569–1576, 1976.

    PubMed  CAS  Google Scholar 

  126. Imai S, Otorii T, Takeda K, Katano Y: Coronary vasodilation and adrenergic receptors in the dog heart and coronary. Jpn J Pharmacol 25: 423–432, 1975.

    Article  PubMed  CAS  Google Scholar 

  127. Murray PA, Vatner SF: Adrenoreceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Cire Res 45: 654–660, 1979.

    Article  CAS  Google Scholar 

  128. Heydrickx GR, Muylaert P, Pannier JL: Alpha-adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 242: H805–809, 1982.

    Google Scholar 

  129. Feigl EO: Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog. Circ Res 37: 88–95, 1975.

    Article  PubMed  CAS  Google Scholar 

  130. Powell JR, Feigl EO: Carotid sinus reflex coronary vasoconstriction during controlled myocardial oxygen metabolism in the dog. Circ Res 44: 44–51, 1979.

    Article  PubMed  CAS  Google Scholar 

  131. Buffington CW, Feigl EO: Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog. Circ Res 48: 416–423, 1981.

    Article  PubMed  CAS  Google Scholar 

  132. Yasue H, Touyama M, Shimamoto M, Kato H, Tanaka S, Akiyama F: Role of autonomic nervous system in the pathogenesis of Prinzmetal’s variant form of angina. Circulation 50: 534–539, 1974.

    Article  PubMed  CAS  Google Scholar 

  133. Yasue H, Touyama M, Kato H, Tanaka S, Akiyama F: Prinzmetal’s variant form of angina as a manifestation of alpha adrenergic receptor-mediated coronary artery spasm: documentation by coronary arteriography. Am Heart J 91: 148–155, 1976.

    Article  PubMed  CAS  Google Scholar 

  134. Levene DL, Freeman MR: Alpha-adrenergic mediated coronary artery spasm. JAMA 236: 1018 1022, 1976.

    Google Scholar 

  135. Hillis LD, Braunwald E: Coronary artery spasm. N Engl J Med 299: 695–702, 1978.

    Article  PubMed  CAS  Google Scholar 

  136. Zuberbuhler RC, Bohr DF: Responses of coronary smooth muscle to catecholamines. Circ Res 16: 431–440, 1965.

    Article  PubMed  CAS  Google Scholar 

  137. Mekata H, Niu H: Electrical and mechanical responses of coronary artery smooth muscle to catecholamines. Jpn J Physiol 19: 599–608, 1969.

    Article  PubMed  CAS  Google Scholar 

  138. Andersson R, Holmberg S, Svedmyr N, Aberg G: Adrenergic alpha-and beta-receptors in coronary vessels in man: an in vitro study. Acta Med Scand 191: 241–244, 1972.

    PubMed  CAS  Google Scholar 

  139. Bayer B-L, Mentz P, Forster W: Characterization of the adrenoceptors in coronary arteries of pigs. Eur J Pharmacol 29: 58–69, 1974.

    Article  PubMed  CAS  Google Scholar 

  140. Feigl EO: Parasympathetic control of coronary blood flow in dogs. Circ Res 15: 509–519, 1969.

    Article  Google Scholar 

  141. Tiedt N, Religa A: Vagal control of coronary blood flow in dogs. Basic Res Cardiol 74: 267–276, 1979.

    Article  Google Scholar 

  142. Feigl EO: Sympathetic control of coronary circulation. Circ Res 20: 262–271, 1967.

    Article  PubMed  CAS  Google Scholar 

  143. Brown AM: Motor innervation of the coronary arteries of the cat. J Physiol (Lond) 198: 311–328, 1968.

    CAS  Google Scholar 

  144. Feigl EO: Carotid sinus reflex control of coronary blood flow. Circ Res 23: 262–271, 1968.

    Article  Google Scholar 

  145. Vatner SF, Franklin D, Van Critters RL, Braunwald E: Effects of carotid sinus nerve stimulation on the coronary circulation of the conscious dog. Circ Res 27: 11–21, 1970.

    Article  PubMed  CAS  Google Scholar 

  146. Hackett JG, Abboud FM, Mark AL, Schmid PG, Heistad DD: Coronary vascular responses to stimulation of chemoreceptors and baroreceptors: evidence for reflex activation of vagal cholinergic innervation. Circ Res 31: 8–17, 1972.

    Article  PubMed  CAS  Google Scholar 

  147. Religa Z, Trzebski A, Religa A, Glowienko A: Effect of the stimulation of afferent fibers in Hering’s nerve on the blood flow and resistance in the coro-nary vessels of the dogs. Pol Med J 11: 632–641, 1972.

    PubMed  CAS  Google Scholar 

  148. Hashimoto K, Igakashi S, Uei I, Kumakura S: Carotid chemoreceptor reflex effects on coronary flow and heart rate. Am J Physiol 206: 536–540, 1964.

    PubMed  CAS  Google Scholar 

  149. Vatner SF, McRitchie RJ: Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circ Res 37: 664–673, 1975.

    Article  PubMed  CAS  Google Scholar 

  150. Ehrhart IC, Parker PE, Weidner WJ, Dabney JM, Scott JB, Haddy FJ: Coronary vascular and myocardial responses to carotid body stimulation in the dog. Am J Physiol 229: 754–760, 1975.

    PubMed  CAS  Google Scholar 

  151. Fallen EL, Elliott WC, Gorlin R: Mechanisms of angina in aortic stenosis. Circulation 36: 480–488, 1967.

    Article  PubMed  CAS  Google Scholar 

  152. Goodwin JF: Hypertrophie diseases of the myocardium. Prog Cardiovasc Dis 16: 199–238, 1973.

    Article  PubMed  CAS  Google Scholar 

  153. Hurst JW, Logue RB, Schlant RO, Wenger NK: The heart, arteries and veins. New York: McGraw-Hill 1978, pp 1556–1590.

    Google Scholar 

  154. Harris CN, Aronow WS, Parker DP, Kaplan MA: Treadmill stress in left ventricular hypertrophy. Chest 63: 353–357, 1979.

    Article  Google Scholar 

  155. Roberts JT, Wearn TJ: Quantitative changes in the capillary muscle relationships in human heart during growth and hypertrophy. Am Heart J 21: 617633, 1941.

    Google Scholar 

  156. Linzbach AJ: Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5: 370–382, 1960.

    Article  PubMed  CAS  Google Scholar 

  157. Arai S, Machida A, Nakamura T: Myocardial structure and vascularization of hypertrophied hearts. Tohoku J Exp Med 95: 35–54, 1968.

    Article  PubMed  CAS  Google Scholar 

  158. Rakusan K: Quantitative morphology of capillaries of the heart: number of capillaries in animal and human hearts under normal and pathological conditions. Methods Achiev Exp Pathol 5: 272–286, 1971.

    PubMed  CAS  Google Scholar 

  159. Zoll PM, Wessler S, Schlesinger MJ: Interarterial coronary anastomoses in the human heart, with particular reference to anemia and relative cardiac anoxia. Circulation 4: 797–815, 1951.

    Article  PubMed  CAS  Google Scholar 

  160. Moller JH, Nakeb A, Edwards JE: Infarction of the papillary muscle and mitral insufficiency associated with congenital aortic stenosis. Circulation 34: 8791, 1966.

    Article  Google Scholar 

  161. Buchner F: Qualitative morphology of heart failure: light and electron microscopic characteristics of acute and chronic heart failure. Methods Achiev Exp Pathol 5: 60–120, 1971.

    PubMed  CAS  Google Scholar 

  162. Marchetti GV, Merlo L, Noseda V, Visioli O: Myocardial blood flow in experimental cardiac hypertrophy in dogs. Cardiovasc Res 7: 519–527, 1973.

    Article  PubMed  CAS  Google Scholar 

  163. Holtz J, Von Restorff W, Bard P, Bassenge E: Transmural distribution of myocardial blood flow and of coronary vascular reserve in canine left ventricular hypertrophy. Basic Res Cardiol 72: 86–92, 1977.

    Article  Google Scholar 

  164. O’Keefe DD, Hoffman JIE, Cheitlin R, O’Neill MJ, Allard JR, Shapkin E: Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 43: 43–51, 1978.

    Article  PubMed  Google Scholar 

  165. Vrobel TR, Ring SW, Anderson RW, Emery RW, Bache RJ: Effect of heart rate on myocardial blood flow in dogs with left ventricular hypertrophy. Am J Physiol 239: H621–627, 1980.

    PubMed  CAS  Google Scholar 

  166. Bache RJ, Vrobel TR: Effects of exercise on blood flow in the hypertrophied heart. Am J Cardiol 44: 1029–1033, 1979.

    Article  PubMed  CAS  Google Scholar 

  167. Mueller TM, Marcus ML, Kerber RE, Young JA, Barnes RW, Abboud FM: Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ Res 42: 543–549, 1978.

    Article  PubMed  CAS  Google Scholar 

  168. Malik AB, Abe T, O’Kane H, Geha AS: Cardiac function, coronary flow, and oxygen consumption in stable left ventricular hypertrophy. Am J Physiol 225: 186–191, 1973.

    PubMed  CAS  Google Scholar 

  169. Wangler RD, Peters KG, Marcus ML, Tomanek RJ: Effects of duration and severity of arterial hypertension and cardiac hypertrophy on coronary vasodilator reserve. Circ Res 51: 10–18, 1982.

    Article  PubMed  CAS  Google Scholar 

  170. Marcus ML, Mueller TM, Gascho JA, Kerber RE: Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation. Am J Cardiol 44: 1023–1028, 1979.

    Article  PubMed  CAS  Google Scholar 

  171. Murray PA, Vatner SF: Reduction of maximal coronary vasodilator capacity in conscious dogs with severe right ventricular hypertrophy. Circ Res 48: 27–33, 1981.

    Article  Google Scholar 

  172. Archie JP, Fixler DE, Ullyot DJ, Buckberg GD, Hoffman JIE: Regional myocardial blood flow in lambs with concentric right ventricular hypertrophy. Circ Res 34: 143–154, 1974.

    Article  PubMed  CAS  Google Scholar 

  173. Murray PA, Baig H, Fishbein MC, Vatner SF: Effects of experimental right ventricular hypertrophy on myocardial blood flow in conscious dogs. J Clin Invest 64: 421–427, 1979.

    Article  PubMed  CAS  Google Scholar 

  174. Manohar M, Thurmon JC, Tranquill WJJ, Devous MD, Theodorakis MC, Shawley RV, Feller DL, Benson JG: Regional myocardial blood flow and coronary vascular reserve in unanesthetized young calves with severe concentric right ventricular hypertrophy. Circ Res 48: 785–796, 1982.

    Article  Google Scholar 

  175. Bache RJ, Vrobel TR, Ring WS, Emery RW, An-derson RW: Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ Res 48: 76–87, 1981.

    Google Scholar 

  176. Rembert JC, Kleinman LH, Fedor JM, Wechsler AS, Greenfield JC Jr: Myocardial blood flow distribution in concentric left ventricular hypertrophy. J Clin Invest 62: 379–386, 1978.

    Article  PubMed  CAS  Google Scholar 

  177. Mittman U, Bruckner UB, Keller HE, Kohler U, Vetter H, Waag K-L: Myocardial flow reserve in experimental cardiac hypertrophy. Basic Res Cardiol 75: 199–206, 1980.

    Article  Google Scholar 

  178. Breisch EA, Houser SR, Carey RA, Spann JF, Bove AA: Myocardial blood flow and capillary density in chronic pressure overload of the feline left ventricle. Cardiovasc Res 14: 469–475, 1980.

    Article  PubMed  CAS  Google Scholar 

  179. Lund DD, Tomanek RJ: Myocardial morphology in spontaneously hypertensive and aortic-constricted rats. Am J Anat 152: 141–151, 1978.

    Article  PubMed  CAS  Google Scholar 

  180. Henquell L, Odoroff CL, Honig CR: Intercapillary distance and capillary reserve in hypertrophied rat hearts beating in situ. Circ Res 41: 400–408, 1977.

    Article  PubMed  CAS  Google Scholar 

  181. Mulvaney MJ, Hansen PK, Aalkjaer C: Direct Evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res 43: 854–864, 1978.

    Article  Google Scholar 

  182. Warshaw DM, Mulvaney MJ, Halpern W: Mechanical and morphological properties of arterial resistance vessels in young and old spontaneously hypertensive rats. Circ Res 45: 250–259, 1979.

    Article  PubMed  CAS  Google Scholar 

  183. Noreson E, Halfback M, Hjalmarsson A: Structural “resetting” of the coronary vascular bed in spontaneously hypertensive rats. Acta Physiol Scand 101: 363–365, 1977.

    Article  Google Scholar 

  184. Yamori Y, Mori C, Nishio T, Ooshima A, Hork R, Ohtaka M, Soeda T, Saito M, Abe K, Nara Y, Nakao Y, Kihara M: Cardiac hypertrophy in early hypertension. Am J Cardiol 44: 964–969, 1979.

    Article  PubMed  CAS  Google Scholar 

  185. Peters K, Wangler R, Tomanek R, Marcus M: Interaction of age and hypertrophy on coronary dilator capacity. Fed Proc 40: 546, 1981.

    Google Scholar 

  186. Schaper W: The collateral circulation of the heart. Amsterdam: North-Holland, 1971.

    Google Scholar 

  187. Gregg DE: The natural history of collateral development. Circ Res 35: 335–344, 1974.

    Article  PubMed  CAS  Google Scholar 

  188. Schwarz F, Wagner HO, Sesto M, Hofmann M, Schaper W, Kubler W: Native collaterals in the development of collateral circulation after chronic coronary stenosis in mongrel dogs. Circulation 66: 303–308, 1982.

    Article  PubMed  CAS  Google Scholar 

  189. Schwarz F, Flameng W, Ensslen R, Sesto M, Thor-mann J: Effect of coronary collaterals on left ventricular function at rest and during stress. Am Heart J 95: 570–577, 1978.

    Google Scholar 

  190. Kelly DT, Pitt B: Regional changes in intramyocardial pressure following myocardial ischemia. In: Bloor CM, Olsson RA (eds) Current topics in coronary research, vol 39. New York: Plenum, 1973, pp 115–130.

    Chapter  Google Scholar 

  191. Bache RJ, Cobb FR, Greenfield JC: Myocardial blood flow distribution during ischemia-induced coronary vasodilation in the unanesthetized dog. J Clin Invest 54: 1462–1472, 1974.

    Article  PubMed  CAS  Google Scholar 

  192. Tennant R, Wiggers CJ: The effect of coronary occlusion on myocardial contraction. Am J Physiol 112: 351–361, 1935.

    Google Scholar 

  193. Katz AM: Effects of ischemia on the contractile process of heart muscle. Am J Cardiol 32: 456–460, 1973.

    Article  PubMed  CAS  Google Scholar 

  194. Hillis LD, Braunwald E: Myocardial ischemia. N Eng J Med 296: 971–978, 1977.

    Article  CAS  Google Scholar 

  195. Theroux P, Franklin D, Ross J, Kemper WS: Regional myocardial function during acute coronary artery occlusion and its modificaiton by pharmacologic agents in the dog. Circ Res 35: 896–908, 1974.

    Article  PubMed  CAS  Google Scholar 

  196. Frame LH, Powell WJ: Progressive perfusion impairment during prolonged low flow myocardial ischemia in dogs. Circ Res 39: 269–276, 1976.

    Article  PubMed  CAS  Google Scholar 

  197. Guyton RA, McClenathan JH, Michaelis LL: Evolution of regional ischemia distal to a proximal coronary stenosis: self-propagation of ischemia. Am J Cardiol 40: 381–392, 1977.

    Article  PubMed  CAS  Google Scholar 

  198. Sparks HV, Gorman MG: Ischemic vasodilation or ischemic vasoconstriction. In: Vanhoutte PM, Leu-sen I (eds) Vasodilation. New York: Raven, 1981, pp 193–204.

    Google Scholar 

  199. Gorman MG, Sparks, HV: Progressive coronary vasoconstriction during relative ischemia in canine myocardium. (ref. 199) Circ Res 51:4;;-420, 1983.

    Google Scholar 

  200. Harris JR, Overholser KA, Stiles RG: Concurrent increases in resistance and transport after coronary obstruction in dogs. Am J Physiol 240: H262–273, 1981.

    PubMed  CAS  Google Scholar 

  201. Willerson JT, Powell WJ, Guiney TE, Stark JJ, Sanders CA, Leaf A: Improvement in myocardial function and coronary blood flow in ischemic myocardium after mannitol. J Clin Invest 51: 2989 2998, 1972.

    Google Scholar 

  202. Krishnamurty VSR, Adams R, Smitherman T, Willerson JT: Influence of mannitol on isolated, in vitro smooth muscle vascular reactivity. Circulation (Suppl 2)52: II - 7, 1975.

    Google Scholar 

  203. Wangler RD, DeWitt DF, Sparks HV: Phasic release of adenosine during ischemia. Fed Proc 42: 462, 1983.

    Google Scholar 

  204. Gorman MG, Sparks HV: Nitroglycerin causes vasodilation within ischemic myocardium. Cardiovasc Res 14: 515–521, 1980.

    Article  PubMed  CAS  Google Scholar 

  205. Willerson JT, Watson JT, Hutton I, Templeton GH, Fixier DE: Reduced myocardial reflow and increased coronary vascular resistance following prolonged myocardial ischemia in the dog. Circ Res 36: 771–781, 1975.

    Article  PubMed  CAS  Google Scholar 

  206. Parker PE, Bashour FA, Downey HF, Kechejian SJ, Williams AF: Coronary hemodynamics during re-perfusion following acute coronary ligation in dogs. Am Heart J 90: 593–599, 1975.

    Article  PubMed  CAS  Google Scholar 

  207. Kloner RA, Ganote CE, Jennings RB: The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54: 1496–1507, 1974.

    Article  PubMed  CAS  Google Scholar 

  208. Parker PE, Bashour FA, Downey HF, Bouvros IS: Coronary reperfusion: effects of hyperosmotic mannitol. Am Heart J 97: 745–752, 1979.

    Article  PubMed  CAS  Google Scholar 

  209. Krug A, De Rochemont WM, Korb G: Blood supply of the myocardium after temporary coronary occlusion. Circ Res 19: 57–62, 1966.

    Article  PubMed  CAS  Google Scholar 

  210. Lang T, Corday E, Gold H, Meerbaum S, Rubins S, Constatini C, Hirose S, Osher J, Rosen V: Con-sequences of reperfusion after coronary occlusion: effects on hemodynamic and regional myocardial metabolic function. Am J Cardiol 33: 69–81, 1974.

    Article  PubMed  CAS  Google Scholar 

  211. Powell WJ, Di Bona DR, Flores J, Frega N, Leaf A: Effects of hyperosmotic mannitol in reducing ischemic cell swelling and minimizing myocardial necrosis. Circulation (Suppl 1)53:: I45–49, 1976.

    Google Scholar 

  212. Marcus ML, Kerber RE, Ehrhardt J, Abboud FM: Effects of time on volume and distribution of coronary collateral flow. Am J Physiol 230: 279–285, 1976.

    PubMed  CAS  Google Scholar 

  213. Jugdutt BI, Becker LC, Hutchins GM: Early changes in collateral blood flow during myocardial infarction in conscious dogs. Am J Physiol 237: H371–380, 1979.

    PubMed  CAS  Google Scholar 

  214. Schaper W, Pasyk S: Influence of collateral flow on the ischemic tolerance of the heart following acute and subacute coronary occlusion. Circulation (Suppl 1)53: I57–62, 1976.

    Google Scholar 

  215. Khouri EM, Gregg DE, McGranahan GM: Regression and reappearance of coronary collaterals. Am J Physiol 220: 655–661, 1971.

    PubMed  CAS  Google Scholar 

  216. Eckstein RW: Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ Res 5: 230–235, 1957.

    Article  PubMed  CAS  Google Scholar 

  217. Sanders M, White FC, Peterson TM, Bloor CM: Effects of endurance exercise on coronary collateral blood flow in miniature swine. Am J Physiol 234: H614–619, 1978.

    PubMed  CAS  Google Scholar 

  218. Scheel KW, Ingram LA, Wilson JL: Effects of exercise on the coronary and collateral vasculature of beagles with and without coronary occlusion. Circ Res 48: 523–530, 1981.

    Article  PubMed  CAS  Google Scholar 

  219. Scheel KW, Brody DA, Ingram LA, Keller F: Effects of chronic anemia on the coronary collateral vasculature in dogs. Circ Res 38: 553–559, 1976.

    Article  PubMed  CAS  Google Scholar 

  220. Scheel KW, Rodriguez RJ, Ingram LA: Directional coronary collateral growth with chronic circumflex occlusion in the dog. Circ Res 40: 384–390, 1977.

    Article  PubMed  CAS  Google Scholar 

  221. Eckstein RW: Development of interarterial coronary anastomoses by chronic anemia: disappearance following correction of anemia. Circ Res 3: 306–310, 1955.

    Article  PubMed  CAS  Google Scholar 

  222. Blum RL, Alpern H, Jaffe H, Lang TW, Corday E: Determination of interarterial coronary anastomosis by radioactive spherules: effect of coronary occlusion and hypoxemia. Am Heart J 79: 244–249, 1970.

    Article  PubMed  CAS  Google Scholar 

  223. McGregor M: The nitrates and myocardial ischemia. Circulation 66: 689–692, 1982.

    Article  PubMed  CAS  Google Scholar 

  224. Harder DR, Belardinelli L, Sperelakis N, Rubio R, Berne RM: Differential effects of adenosine and nitroglycerin on the action potentials of large and small coronary arteries. Circ Res 44: 176–182, 1979.

    Article  PubMed  CAS  Google Scholar 

  225. Schnaar RL, Sparks HV: Response of large and small coronary arteries to nitroglycerin, NaNO2 and adenosine. Am J Physiol 223: 223–228, 1972.

    PubMed  CAS  Google Scholar 

  226. Fam WM, McGregor M: Effect of nitroglycerin and dipyridamole on regional coronary resistance. Circ Res 22: 649–659, 1968.

    Article  PubMed  CAS  Google Scholar 

  227. Tomoike H, Ootsubo H, Sakai K, Kikuchi Y, Nahamura M: Continuous measurement of coronary artery diameter in situ. Am J Physiol 240: H73–79, 1981.

    PubMed  CAS  Google Scholar 

  228. Torres EC, Brandi G: The effect of vasoactive drugs on local coronary flow. Can J Physiol Pharmacol 47: 421–430, 1969.

    Article  PubMed  CAS  Google Scholar 

  229. Vatner SF, Pagani M, Manders WT, Pasipoularides AD: Alpha adrenergic vasoconstriction and nitroglycerin vasodilation of large coronary arteries in the conscious dog. J Clin Invest 65: 5–14, 1980.

    Article  PubMed  CAS  Google Scholar 

  230. Cohen MV, Sonnenblick EH, Kirk ES: Coronary steal: its role in detrimental effect of isoproterernol after acute coronary occlusion in dogs. Am J Cardiol 38: 880–888, 1976.

    Article  PubMed  CAS  Google Scholar 

  231. Feldman RL, Pepine CJ, Conti R: Magnitude of dilatation of large and small coronary arteries by nitroglycerin. Circulation 64: 324–330, 1981.

    Article  PubMed  CAS  Google Scholar 

  232. Ganz W, Marcus HS: Failure of intracoronary nitroglycerin to alleviate pacing-induced angina. Circulation 46: 880–889, 1972.

    Article  PubMed  CAS  Google Scholar 

  233. Macho P, Hintze TH, Vatner S: Regulation of large coronary arteries by increases in myocardial metabolic demands in conscious dogs. Circ Res 49: 594600, 1981.

    Google Scholar 

  234. Likoff W, Kasparin H, Lehman JS, Segal BL: Evaluation of “coronary vasodilators” by coronary angiography. Am J Cardiol 13: 7–9, 1964.

    Article  PubMed  CAS  Google Scholar 

  235. Brown G, Bolson W, Peterson RB, Pierce CD, Dodge HT: The mechanisms of nitroglycerin action: stenosis vasodilation as a major component of drug response. Circulation 64: 1089–1097, 1981.

    Article  PubMed  CAS  Google Scholar 

  236. Fam WM, McGregor M: Effect of coronary vasodilator drugs on retrograde flow in areas of chronic myocardial ischemia. Circ Res 15: 355–365, 1964.

    Article  PubMed  CAS  Google Scholar 

  237. Goldstein RE, Stinson EB, Scherer JL, Senigen RP, Grehl TM, Epstein SE: Intraoperative coronary collateral function in patients with coronary occlusive disease: nitroglycerin responsiveness and angiographie correlations. Circulation 49: 298–308, 1974.

    Article  PubMed  CAS  Google Scholar 

  238. Cohen MV, Downey JM, Sonnenblick EH, Kirk ES: Effects of nitroglycerin on coronary collaterals and myocardial contractility. J Clin Invest 52: 2836–2847, 1973.

    Article  PubMed  CAS  Google Scholar 

  239. Jugdutt BI, Becker LC, Huthchins GM, Bulkley BH, Reid PR, Kallman CH: Effect of intravenous nitroglycerin on collateral blood flow and infarct size in the conscious dog. Circulation 63: 17–28, 1981.

    Article  PubMed  CAS  Google Scholar 

  240. Forman R, Kirk ES, Downey JM, Sonnenblick EH: Nitroglycerin and heterogeneity of myocardial blood flow: reduced subendocardial blood flow and ventricular contractile force. J Clin Invest 52: 905911, 1973.

    Google Scholar 

  241. Parker JO, Di Girogi S, West RO: A hemodynamic study of acute coronary insufficiency precipitated by exercise with observations on the effects of nitroglycerin. Am J Cardiol 17: 470–483, 1966.

    Article  PubMed  CAS  Google Scholar 

  242. Muller O, Rorvik K: Haemodynamic consequences of coronary heart disease. Br Heart J 20: 302–310, 1958.

    Article  PubMed  CAS  Google Scholar 

  243. Hoeschen RJ, Bousvaros GA, Klassen GA, Fam WM, McGregor M: Haemodynamic effects of angina pectoris, and of nitroglycerin in normal and anginal subjects. Br Heart J 28: 221–230, 1966.

    Article  PubMed  CAS  Google Scholar 

  244. Frick MH, Balcon R, Cross D, Sowton E: Hemodynamic effects of nitroglycerin in patients with angina pectoris studied by an atrial pacing method. Circulation 37: 160–168, 1968.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sparks, H.V., Wangler, R.D., Dewitt, D.F. (1984). Control of the Coronary Circulation. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1171-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1171-4_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1173-8

  • Online ISBN: 978-1-4757-1171-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics