Skip to main content

Electrical Properties of Cells at Rest and Maintenance of the Ion Distributions

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 34))

Abstract

Cardiac muscle is a unique excitable tissue. The peculiar electrical properties of heart muscle determine the special mechanical properties of the heart, enabling it to serve as an effective pump for circulating the blood. The entire ventricle is rapidly activated, within several hundredths of a second, by virtue of the rapidly conducting (2–3 m/s) specialized Purkinje fiber system and by rapid propagation (0.3–0.4 m/s) through the myocardium. The ventricular myocardium normally contracts in an all-ornone manner because of the rapid spread of excitation throughout the muscle. Cardiac muscle cannot normally be tetanized because of the long functional refractory period resulting from the long-duration action potential. The long-duration plateau component of the action potential allows the mechanical active state to be maximally developed and maintained for a sufficiently long period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jam MK: The bimolecular lipid membrane: a system. New York: Van Nostrand, 1972.

    Google Scholar 

  2. Henn FA, Sperelakis N: Stimulative and protective action of Sr2+ and Bat+ on (Na+, K+)-ATPase from cultured heart cells. Biochem Biophys Acta 163: 415–417, 1968.

    Article  PubMed  CAS  Google Scholar 

  3. Sperelakis N: Handbook of physiology. Berne RM, Sperelakis N (eds) Vol 1: The cardiovascular system. Bethesda: American Physiological Society, 1979, pp 187–267.

    Google Scholar 

  4. Dhalla NS, Ziegelhoffer A, Hazzow JA: Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 55: 1211–1234, 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Jones LR, Maddock SW, Besch HR Jr: Unmasking effect of alamethicin on the (Na+, K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles. J Biol Chem 255: 9971–9980, 1980.

    PubMed  CAS  Google Scholar 

  6. Daniel EE, Kwan CY, Matlib MA, Crankshaw D, Kidwai A: Characterization and Cat+ -accumulation by membrane fractions from myometrium and artery. In: Casteels R, Godfraind T, Ruegg JC (eds) Excitation—contraction coupling in smooth muscle. Amsterdam: Elsevier/North-Holland, 1977, pp 181–188.

    Google Scholar 

  7. Glitsch HG: Activation of the electrogenic sodium pump in guinea-pig auricles by internal sodium ions. J Physiol (Lond) 220: 565–582, 1972.

    CAS  Google Scholar 

  8. Page E, Storm SR: Cat heart muscle in vitro. VIII. Active transport of sodium in papillary muscles. J Gen Physiol 48: 957–972, 1965.

    Article  PubMed  CAS  Google Scholar 

  9. McDonald TF, MacLeod DP: Maintenance of resting potential in anoxic guinea pig ventricular muscle: electrogenic sodium pumping. Science 172: 570–572, 1971.

    Article  PubMed  CAS  Google Scholar 

  10. Noma A, Irisawa H: Electrogenic sodium pump in rabbit sinoatrial node cell. Pflugers Arch Eur J Physiol 351: 177–182, 1974.

    Article  CAS  Google Scholar 

  11. Vassalle M: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ Res 27: 361–377, 1970.

    Article  PubMed  CAS  Google Scholar 

  12. Pelleg A, Vogel S, Belardinelli L, Sperelakis N: Overdrive suppression of automaticity in cultured chick myocardial cells. Am J Physiol 238: H24 - H30, 1980.

    PubMed  CAS  Google Scholar 

  13. Sperelakis N, Schneider M, Harris EJ: Decreased K+ conductance produced by Ba+ in frog sartorius fibers. J Gen Physiol 50: 1565–1583, 1967.

    Article  PubMed  CAS  Google Scholar 

  14. Cole KS: Membranes, ions and impulses: a chapter of classical biophysics. Berkeley: University of California, 1968.

    Google Scholar 

  15. Trautwein W, Kassebaum DG: On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol 45: 317–330, 1961.

    Article  PubMed  CAS  Google Scholar 

  16. Sperelakis N, Lehmkuhl D: Effect of current on transmembrane potentials in cultured chick heart cells. J Gen Physiol 47: 895–927, 1964.

    Article  PubMed  CAS  Google Scholar 

  17. Sperelakis N, Lehmkuhl D: Effects of temperature and metabolic poisons on membrane potentials of cultured heart cells. Am J Physiol 213: 719–724, 1967.

    PubMed  CAS  Google Scholar 

  18. Sperelakis N: Electrophysiology of cultured chick heart cells. In: Sano T, Mizuhira V (eds) Electrophysiology and ultrastructure of the heart.

    Google Scholar 

  19. Sperelakis N: (Na+,K+)-ATPase activity of embryonic chick heart and skeletal muscles as a function of age. Biochem Biophys Acta 266:230–237, 1972.

    Google Scholar 

  20. Ferrier GR, Moe GK: Effects of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ Res 33: 508–515, 1973.

    Article  PubMed  CAS  Google Scholar 

  21. Kass RS, Tsien RS, Weingart R: Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J Physiol (Lond) 281: 209–226, 1978.

    CAS  Google Scholar 

  22. Sperelakis N, Lehmkuhl D: Ionic interconversion of pacemaker and nonpacemaker cultured chick heart cells. J Gen Physiol 49: 867–895, 1966.

    Article  PubMed  CAS  Google Scholar 

  23. Hermsmeyer K, Sperelakis N: Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba++. Am J Physiol 219: 1108–1114, 1970.

    PubMed  CAS  Google Scholar 

  24. Katzung BG: Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea papillary muscle. Circ Res 37: 118–127, 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Imanishi S, Surawicz B: Automatic activity in depolarized guinea pig ventricular myocardium. Circ Res 39: 751–759, 1976.

    Article  PubMed  CAS  Google Scholar 

  26. Reuter H, Scholz H: The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264: 49–62, 1977.

    CAS  Google Scholar 

  27. Vassalle M: Cardiac pacemaker potentials at different extra-and intracellular K concentrations. Am J Physiol 208: 770–775, 1965.

    PubMed  CAS  Google Scholar 

  28. Noble D: Initiation of the heartbeat. Oxford: Clarendon, 1975.

    Google Scholar 

  29. Irisawa H: Comparative physiology of the cardiac pacemaker mechanism. Physiol Rev 58: 461–498, 1978.

    PubMed  CAS  Google Scholar 

  30. Carmeliet E, Vereecke J: Electrogenesis of the action potential and automaticity. In: Berne RM, Sperelakis N (eds) Handbook of physiology. Bethesda: American Physiological Society, 1979, pp 269–334.

    Google Scholar 

  31. Vassalle M: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ Res 27: 361–377, 1970.

    Article  PubMed  CAS  Google Scholar 

  32. Josephson I, Sperelakis N: On the ionic mechanism underlying adrenergic-cholinergic antagonism in ventricular muscle. J Gen Physiol 79: 69–86, 1982.

    Article  PubMed  CAS  Google Scholar 

  33. New W, Trautwein W: Inward membrane currents in mammalian myocardium. Pflugers Arch 334: 123, 1972.

    Google Scholar 

  34. McDonald TF, Trautwein W: Membrane currents in cat myocardium: separation of inward and outward components. J Physiol 274: 193–216, 1978.

    PubMed  CAS  Google Scholar 

  35. McDonald TF, MacLeod DP: Metabolism and the electrical activity of anoxic ventricular muscle. J Physiol 229: 559–582, 1973.

    PubMed  CAS  Google Scholar 

  36. Schneider JA, Sperelakis N: The demonstration of energy dependence of isoproterenol-induced trans-cellular Cat+ current in isolated perfused guinea pig hearts-an explanation for mechanical failure of ischemic myocardium. J Surg Res 16: 389–403, 1974.

    Article  PubMed  CAS  Google Scholar 

  37. Sperelakis N, Schneider JA: A metabolic control mechanism for calcium ion influxes that may protect the ventricular myocardial cell. Am J Cardiol 37: 1079–1085, 1976.

    Article  PubMed  CAS  Google Scholar 

  38. Vluegels A, Carmeliet E, Bosteels S, Zaman M: Differential effects of hypoxia with age on the chick embryonic heart. Pflugers Arch 365: 159–166, 1976.

    Article  Google Scholar 

  39. Meech RW: Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol 42A: 493–499, 1972.

    Article  CAS  Google Scholar 

  40. Isenberg G: Is potassium conductance of cardiac Purkinje fibres controlled by [Ca2+] Nature (Lond) 253: 273–274, 1975.

    CAS  Google Scholar 

  41. Bassingwaighte JB, Fry CH, McGuigan JAS: Relationship between internal calcium and outward current in mammalian ventricular muscle: a mechanism for the control of the action potential duration? J Physiol 262: 15–37, 1976.

    Google Scholar 

  42. Singer SJ, Nicolson GL: The fluid mosaic model of the structure of cell membranes. Science 175: 720–731, 1972.

    Article  PubMed  CAS  Google Scholar 

  43. Sperelakis N: Changes in membrane electrical properties during development of the heart. In: Zipes DP, Bailey JC, Elharrar V (eds) The slow inward current and cardiac arrhythmias. The Hague: Martinus Nijhoff, pp 221–262, 1980.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sperelakis, N. (1984). Electrical Properties of Cells at Rest and Maintenance of the Ion Distributions. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1171-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1171-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1173-8

  • Online ISBN: 978-1-4757-1171-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics