Skip to main content

Ultrastructure of Mammalian Cardiac Muscle

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 34))

Abstract

The great majority of muscle cells of the mammalian heart are superbly organized entities. It is impressive to consider that observations on these myocytes are in most cases being made on cells which are roughly the same age as the entire animal; only a scant bit of evidence is yet available to suggest that any substantial capability for regeneration is intrinsic to the myocardia of higher vertebrates (see the section on Nuclei). Still these venerable cells can respond admirably under trying circumstances, such as those necessitating osmotic shrinkage or hypertrophy, in which cases they adjust their sarcolemmal and myoplasmic components to maintain an extraordinarily constant surface-volume ratio [1, 2]). In this chapter, we provide a sketch of the fine structure of cardiac muscle cells in mammalian heart. The many electron microscopic studies of such cells have served to point out the difficulty of making generalizations when considering the numerous aspects of myocardial substructure. We will, nevertheless, describe the salient features of myocardial cells, while pointing out along the way some of the variations on these basic themes which have been discovered to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sperelakis N, Rubio R: Ultrastructural changes produced by hypertonicity in cat cardiac muscle. J Mol Cell Cardiol 3: 139–156, 1971.

    Article  PubMed  CAS  Google Scholar 

  2. Page E, McCallister LP: Quantitative electron microscopic description of heart muscle cells: application to normal, hypertrophied and thyroxin-stimulated hearts. Am J Cardiol 31: 172–181, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Simpson FO, Rayns DG, Ledingham JM: The ultrastructure of ventricular and atrial myocardium. In: Challice CE, Virâgh S (eds) Ultrastructure of the mammalian heart. New York: Academic, 1973, pp 1–41.

    Google Scholar 

  4. McNutt NS, Fawcett DW: Myocardial ultrastructure. In: Langer GA, Brady AJ (eds) The mammalian myocardium. New York: John Wiley and Sons, 1974, pp 1–49.

    Google Scholar 

  5. Sommer JR, Johnson EA: Ultrastructure of cardiac muscle. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology, sect 2: The cardiovascular system, vol 1: The heart, Bethesda MD: American Physiological Society, 1979, pp 113–186.

    Google Scholar 

  6. Sperelakis N, Forbes MS, Rubio R: The tubular systems of myocardial cells: ultrastructure and possible function. In: Dhalla NS (ed) Recent advances in studies on cardiac structure and metabolism, vol 4: Myocardial biology. Baltimore: University Park, 1974, pp 163–194.

    Google Scholar 

  7. Sommer JR, Waugh RA: The ultrastructure of the mammalian cardiac muscle cell-with special emphasis on the tubular membrane systems. Am J Pathol 82: 191–232, 1976.

    Google Scholar 

  8. Forbes MS, Sperelakis N: The membrane systems and cytoskeletal elements of mammalian myocardial cells. In: Shay JW, Dowben RM (eds) Cell and muscle motility, vol 3. New York: Plenum, 1983, pp 89–155.

    Chapter  Google Scholar 

  9. Jordan HE, Banks JB: A study of the intercalated discs of the heart of the beef. Am J Anat 22: 285–339, 1917.

    Article  Google Scholar 

  10. Sjöstrand FS, Andersson-Cedergren E, Dewey MM: The ultrastructure of the intercalated disc of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res 1: 271–287, 1958.

    Article  PubMed  Google Scholar 

  11. Rhodin JAG, del Missier P, Reid LC: The structure of the specialized impulse-conduction system of the steer heart. Circulation 24: 349–367, 1961.

    Article  Google Scholar 

  12. Hayashi K: An electron microscope study on the conduction system of the cow heart. Jpn Circ J 26: 765–842, 1962.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobson SL: Culture of spontaneously contracting myocardial cells from adult rats. Cell Struct Function 2: 1–9, 1977.

    Article  Google Scholar 

  14. Vahouny GV, Wei RW, Tamboli A, Albert EN: Adult canine myocytes: isolation, morphology and biochemical characterizations. J Mol Cell Cardiol 11: 339–357, 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Robinson TF, Hayward BS, Krueger, JW, Sonnenblick EH, Wittenberg, BA: Isolated heart myocytes: ultrastructural case study technique. J Microscopy (Oxford) 124: 135–142, 1981.

    Article  CAS  Google Scholar 

  16. Phillips SJ, Dacey DM: Mammalian ventricular heart cell shape, surface and fiber organization as seen with the scanning electron microscope (SEM). J Cell Biol 70: 85a, 1976.

    Google Scholar 

  17. Phillips SJ, Dacey DM, Bove A, Conger AD: Quantitative data on the shape of the mammalian ventricular heart cell. Fed Proc 36: 601, 1977.

    Google Scholar 

  18. Marino TA, Cook PN, Cook LT, Dwyer SJ III: The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions. Anat Rec 198: 537–546, 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Janicki JS, Weber KT, Gochman RF, Shroff S, Geheb FJ: Three-dimensional myocardial and ventricular shape: a surface representation. Am J Physiol 241: H1 - H11, 1981.

    PubMed  CAS  Google Scholar 

  20. Nag AC, Fischman DA, Aumont MC, Zak R: Studies of isolated adult rat heart cells: the surface morphology and the influence of extracellular calcium ion concentration on cellular viability. Tissue Cell 9: 419–436, 1977.

    Article  PubMed  CAS  Google Scholar 

  21. Bishop SP, Drummond JL: Surface morphology and cell size measurement of isolated rat cardiac myocytes. J Mol Cell Cardiol 11: 423–433, 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Goldstein MA, Schroeter JP, Sass RL: Optical diffraction of the Z lattice in canine cardiac muscle. J Cell Biol 75: 818–836, 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein MA, Schroeter JP, Sass RL: The Z lattice in canine cardiac muscle. J Cell Biol 83: 187–204, 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Landon DN: The influence of fixation upon the fine structure of the Z-disk of rat striated muscle. J Cell Sci 6: 257–276, 1970.

    PubMed  CAS  Google Scholar 

  25. Anversa P, Olivetti G, Bracchi P-G, Loud AV: Postnatal development of the M-band in rat cardiac myofibrils. Circ Res 48: 561–568, 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Forbes MS, Sperelakis N: The presence of transverse and axial tubules in the ventricular myocardium of embryonic and neonatal guinea pigs. Cell Tissue Res 166: 83–90, 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Hirakow R, Gotoh T: Quantitative studies on the ultrastructural differentiation and growth of mammalian cardiac muscle cells. II. The atria and ventricles of the guinea pig. Acta Anat 108: 230–237, 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Forbes MS, Sperelakis N: Structures located at the level of the Z bands in mouse ventricular myocardial cells. Tissue Cell 12: 467–489, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Ferrans VJ, Roberts WC: Intermyofibrillar and nuclear-myofibrillar connections in human and canine myocardium: an ultrastructural study. J Mol Cell Cardiol 5: 247–257, 1973.

    Article  PubMed  CAS  Google Scholar 

  30. Goldstein MA, Entman ML: Microtubules in mammalian heart muscle. J Cell Biol 80: 183–195, 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Behrendt H: Effect of anabolic steroids on rat heart muscle cells. I. Intermediate filaments. Cell Tissue Res 180: 303–315, 1977.

    Article  PubMed  CAS  Google Scholar 

  32. Fuseler JW, Shay JW, Feit H: The role of intermediate (10-nm) filaments in the development and integration of the myofibrillar contractile apparatus in the embryonic mammalian heart. In: Dowben RM, Shay JW (eds) Cell and muscle motility, vol 1. New York: Plenum, 1981, pp 205–259.

    Chapter  Google Scholar 

  33. Carlsson E, Kjörell U, Thornell L-E, Lambertsson A, Strehler E: Differentiation of the myofibrils and the intermediate filament system during postnatal development of the rat heart. Eur J Cell Biol 27: 62–78, 1982.

    PubMed  CAS  Google Scholar 

  34. Palmer JW, Tandler B, Hoppel CL: Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252: 8731–8739, 1977.

    PubMed  CAS  Google Scholar 

  35. Wolkowicz PE, McMillan-Wood J: Respiration-dependent calcium ion uptake by two preparations of cardiac mitochondria. Biochem J 186: 257–266, 1980.

    PubMed  CAS  Google Scholar 

  36. Matlib MA, Rebman D, Ashraf M, Rouslin W, Schwartz A: Differential activities of putative subsarcolemmal and interfibrillar mitochondria from cardiac muscle. J Mol Cell Cardiol 13: 163–170, 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Forbes MS, Sperelakis N: Association between gap junctions and mitochondria in mammalian myocardial cells. Tissue Cell 14: 25–37, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Peracchia C: Calcium effects on gap junction structure and cell coupling. Nature (Lond) 271: 669–671, 1978.

    Article  CAS  Google Scholar 

  39. Baldwin KM: Cardiac gap junction configuration after an uncoupling treatment as a function of time. J Cell Biol 82: 66–75, 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Fawcett DW, McNutt NS: The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol 42: 1–45, 1969.

    Article  PubMed  CAS  Google Scholar 

  41. Kraus B, Cain H: Giant mitochondria in the human myocardium-morphogenesis and fate. Virchows Arch [B) 33: 77–89, 1980.

    Article  CAS  Google Scholar 

  42. Brodsky WK, Arefyeva AM, Uryvaeva IV: Mitotic polyploidization of mouse heart myocytes during the first postnatal week. Cell Tissue Res 210: 133–144, 1980.

    Article  PubMed  CAS  Google Scholar 

  43. Gräbner W, Pfitzer P: Number of nuclei in isolated myocardial cells of pigs. Virchows Arch [B) 15: 279–294, 1974.

    Google Scholar 

  44. Schneider R, Pfitzer P: Die Zahl der Kerne in isolierten Zellen des menschlichen Myokards. Virchows Arch [B) 12: 238–258, 1973.

    CAS  Google Scholar 

  45. Bugaisky L, Zak R: Cellular growth of cardiac muscle after birth. Tex Rep Biol Med 39: 123–138, 1979.

    PubMed  CAS  Google Scholar 

  46. Rumyantsev PP: Ultrastructural reorganization, DNA synthesis and mitotic division of myocytes in atria of rats with left ventricle infarction: an electron microscopic and autoradiographic study. Virchows Arch [B) 15: 357–378, 1974.

    CAS  Google Scholar 

  47. Rumyantsev PP, Snigirevskaya ES: The ultrastructure of differentiating cells of the heart muscle in the state of mitotic division. Acta Morphol Acad Sci Hung 16: 271–283, 1968.

    PubMed  CAS  Google Scholar 

  48. Bloom S, Cancilla PA: Conformational changes in myocardial nuclei of rats. Circ Res 24: 189–196, 1969.

    Article  PubMed  CAS  Google Scholar 

  49. Langer GA: Ionic movements and the control of contraction. In: Langer GA, Brady AJ (eds) The mammalian myocardium. New York: John Wiley and Sons, 1974, pp 193–217.

    Google Scholar 

  50. Isenberg G, Klöckner U: Glycocalyx is not required for slow inward calcium current in isolated rat heart myocytes. Nature 284: 358–360, 1980.

    Article  PubMed  CAS  Google Scholar 

  51. Gabella G: Inpocketings of the cell membrane (caveolae) in the rat myocardium. J Ultrastruct Res 65: 135–147, 1978.

    Article  PubMed  CAS  Google Scholar 

  52. Levin KR, Page E: Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res 46: 244–255, 1980.

    Article  PubMed  CAS  Google Scholar 

  53. Forssmann WG, Girardier L: A study of the T system in rat heart. J Cell Biol 44: 1–19, 1970.

    Article  PubMed  CAS  Google Scholar 

  54. Masson-Pévet M, Gros D, Besselsen E: The caveolae in rabbit sinus node and atrium. Cell Tissue Res 208: 183–196, 1980.

    Article  PubMed  Google Scholar 

  55. Forbes MS, Sperelakis N: A labyrinthine structure formed from a transverse tubule of mouse ventricular myocardium. J Cell Biol 56: 865–869, 1973.

    Article  PubMed  CAS  Google Scholar 

  56. Ishikawa H, Yamada E: Differentiation of the sarcoplasmic reticulum and T-system in developing mouse cardiac muscle. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. New York: Raven, 1976, pp 21–35.

    Google Scholar 

  57. Sperelakis N, Rubio R: An orderly lattice of axial tubules which interconnect adjacent transverse tubules in guinea-pig ventricular myocardium. J Mol Cell Cardiol 2: 211–220, 1971.

    Article  PubMed  CAS  Google Scholar 

  58. Forbes MS, Sperelakis N: Myocardial couplings: their structural variations in the mouse. J Ultrastruct Res 58: 50–65, 1977.

    Article  PubMed  CAS  Google Scholar 

  59. Forbes MS, Sperelakis N: Bridging junctional processes in couplings of striated, cardiac, and smooth muscle cells. Muscle Nerve 5: 674–681, 1982.

    Article  Google Scholar 

  60. Ayettey AS, Navaratnam V: The fine structure of myocardial cells in the grey seal. J Anat 131: 748, 1980.

    Google Scholar 

  61. Ayettey AS, Navaratnam V: The ultrastructure of myocardial cells in the golden hamster Cricetus auratus. J Anat 132: 519–524, 1981.

    PubMed  CAS  Google Scholar 

  62. Forbes MS, Plantholt BA, Sperelakis N: Cytochemical staining procedures selective for sarcotubular systems of muscle: applications and modifications. J Ultrastruct Res 60: 306–327, 1977.

    Article  PubMed  CAS  Google Scholar 

  63. Legato MJ: Cellular mechanisms of normal growth in the mammalian heart. II. A quantitative and qualitative comparison between the right and left ventricular myocytes in the dog from birth to five months of age. Circ Res 44: 263–279, 1979.

    Article  PubMed  CAS  Google Scholar 

  64. Legato MJ: Ultrastructural characteristics of the rat ventricular cell grown in tissue culture, with special reference to sarcomerogenesis. J Mol Cell Cardiol 4: 299–317, 1972.

    Article  PubMed  CAS  Google Scholar 

  65. Van Winkle WB: The fenestrated collar of mammalian cardiac sarcoplasmic reticulum: a freeze-fracture study. Am J Anat 149: 277–282, 1977.

    Article  PubMed  Google Scholar 

  66. Dolber PC, Sommer JR: Freeze-fracture appearance of rabbit cardiac sarcoplasmic reticulum. In: Bailey G (ed) Thirty-eighth annual EMSA meeting. Baton Rouge: Claitor’s, 1980, pp 630–631.

    Google Scholar 

  67. Scales DJ: Aspects of the cardiac sarcotubular system revealed by freeze fracture electron microscopy. J Mol Cell Cardiol 13: 373–380, 1981.

    Article  PubMed  CAS  Google Scholar 

  68. Somlyo AV: Bridging structures spanning the junctional gap at the triad of skeletal muscle. J Cell Biol 80: 743–750, 1979.

    Article  PubMed  CAS  Google Scholar 

  69. Eisenberg BR, Gilai A: Structural changes in single muscle fibers after stimulation at a low frequency. J Gen Physiol 74: 1–16, 1979.

    Article  PubMed  CAS  Google Scholar 

  70. Eisenberg BR, Eisenberg RS: The T-SR junction in contracting single skeletal muscle fibers. J Gen Physiol 79: 1–19, 1982.

    Article  PubMed  CAS  Google Scholar 

  71. Brunschwig JP, Brandt N, Caswell AH, Lukeman DS: Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordanting. J Cell Biol 93: 533–542, 1982.

    Article  PubMed  CAS  Google Scholar 

  72. Kelly DE, Kuda AM: Subunits of the triadic junction in fast skeletal muscle as revealed by freeze-fracture. J Ultrastruct Res 68: 220–233, 1979.

    Article  PubMed  CAS  Google Scholar 

  73. Forbes MS, Sperelakis N: Spheroidal bodies in the junctional sarcoplasmic reticulum of lizard myocardial cells. J Cell Biol 60: 602–615, 1974.

    Article  PubMed  CAS  Google Scholar 

  74. Jewett PH, Sommer JR, Johnson EA: Cardiac muscle: its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum. J Cell Biol 49: 50–65, 1971.

    Article  PubMed  CAS  Google Scholar 

  75. Waugh RA, Sommer JR: Lamellar junctional sarcoplasmic reticulum: a specialization of cardiac sarcoplasmic reticulum. J Cell Biol 63: 337–343, 1974.

    Article  PubMed  CAS  Google Scholar 

  76. Bossen EH, Sommer JR, Waugh RA: Comparative stereology of the mouse and finch left ventricle. Tissue Cell 10: 773–784, 1978.

    Article  PubMed  CAS  Google Scholar 

  77. Page E, Surdyk-Droske M: Distribution, surface density, and membrane area of diadic junctional contacts between plasma membrane and terminal cisterns in mammalian ventricle. Circ Res 45: 260267, 1979.

    Google Scholar 

  78. McNutt NS: Ultrastructure of the myocardial sarcolemma. Circ Res 37: 1–13, 1975.

    Article  PubMed  CAS  Google Scholar 

  79. Rayns DG, Simpson FO, Ledingham JM: Ultra-structure of desmosomes of mammalian intercalated disc: appearances after lanthanum treatment. J Cell Biol 42: 322–326, 1969.

    Article  PubMed  CAS  Google Scholar 

  80. Kelly DE, Kuda AM: Traversing filaments in desmosomal and hemidesmosomal attachments: freeze-fracture approaches toward their characterization. Anat Rec 199: 1–14, 1981.

    Article  PubMed  CAS  Google Scholar 

  81. Kawamura K, James TN: Comparative ultrastructure of cellular junctions in working myocardium and the conduction system under normal and pathologic conditions. J Mol Cell Cardiol 3: 31–60, 1971.

    Article  PubMed  CAS  Google Scholar 

  82. Berry MN, Friend DS, Scheuer J: Morphology and metabolism of intact muscle cells isolated from adult rat heart. Circ Res 26: 679–687, 1970.

    Article  PubMed  CAS  Google Scholar 

  83. Kensler RW, Goodenough DA: Isolation of mouse myocardial gap junctions. J Cell Biol 86: 755–764, 1980.

    Article  PubMed  CAS  Google Scholar 

  84. Sperelakis N: Propagation mechanisms in heart. Annu Rev Physiol 41: 441–457, 1979.

    Article  PubMed  CAS  Google Scholar 

  85. Raviola E, Goodenough DA, Raviola G: Structure of rapidly frozen gap junctions. J Cell Biol 87: 273279, 1980.

    Google Scholar 

  86. McNutt NS, Weinstein RS: The ultrastructure of the nexus: a correlated thin-section and freeze-cleave study. J Cell Biol 47: 666–688, 1970.

    Article  PubMed  CAS  Google Scholar 

  87. Cantin M, Benchimol S, Castonguay Y, Berlinguet J-C, Huet M: Ultrastructural cytochemistry of atrial muscle cells. V. Characterization of specific granules in the human left atrium. J Ultrastruct Res 52: 179–192, 1975.

    Article  PubMed  CAS  Google Scholar 

  88. Goldfischer S: The internal reticular apparatus of Camillo Golgi: a complex, heterogeneous organelle, enriched in acid, neutral, and alkaline phosphatases, and involved in glycosylation, secretion, membrane flow, lysosome formation, and intracellular digestion. J Histochem Cytochem 30: 717–733, 1982.

    Article  PubMed  CAS  Google Scholar 

  89. Tomanek J, Karlsson UL: Myocardial ultrastructure of young and senescent rats. J Ultrastruct Res 42: 201–220, 1973.

    Article  PubMed  CAS  Google Scholar 

  90. Herzog V, Fahimi HD: Identification of peroxisomes (microbodies) in mouse myocardium. J Mol Cell Cardiol 8: 271–281, 1976.

    Article  PubMed  CAS  Google Scholar 

  91. Virâgh S, Challice CE: The impulse generation and conduction system of the heart. In: Challice CE, Virâgh S (eds) Ultrastructure of the mammalian heart. New York: Academic, 1973, pp 43–90.

    Google Scholar 

  92. James TN, Sherf L: Specialized tissues and preferential conduction in the atria of the heart. Am J Cardiol 28: 414–427, 1971.

    Article  PubMed  CAS  Google Scholar 

  93. James TN, Sherf L, Urthaler F: Fine structure of the bundle-branches. Br Heart J 36: 1–18, 1974.

    Article  PubMed  CAS  Google Scholar 

  94. Truex RC: Structural basis of atrial and ventricular conduction. Cardiovasc Clin 6: 2–24, 1974.

    Google Scholar 

  95. Sheri L, James RN: Fine structure of cells and their histological organization within internodal pathways of the heart: clinical and electrocardiographic implications. Am J Cardiol 44: 345–369, 1979.

    Article  Google Scholar 

  96. Colborn GL, Carsey E Jr: Electron microscopy of the sinoatrial node of the squirrel monkey Saimiri sciureus. J Mol Cell Cardiol 4: 525–536, 1972.

    Article  CAS  Google Scholar 

  97. Fawcett DW: The sporadic occurrence in cardiac muscle of anomalous Z bands exhibiting a periodic structure suggestive of tropomyosin. J Cell Biol 36: 266–270, 1968.

    Article  PubMed  CAS  Google Scholar 

  98. Legato MJ: Sarcomerogenesis in human myocardium. J Mol Cell Cardiol 1: 425–437, 1970.

    Article  PubMed  CAS  Google Scholar 

  99. Rybicka K: Sarcoplasmic reticulum in the conducting fibers of the dog heart. Anat Rec 189: 237–262, 1977.

    Article  PubMed  CAS  Google Scholar 

  100. Osculati F, Garibaldi E: Particolari strutturali delle fibre del Purkinje del cuore di ratto; osservazioni al microscopio elettronico effuttuate anche applicando la tecnica della perossidasi. Boll Soc Med Chir (Pavia) 88: 403–437, 1974.

    Google Scholar 

  101. Osculati F, Garibaldi E: Fine structural aspects of the Purkinje fibres of the dog’s heart. J Submicr Cytol 6: 39–53, 1974.

    Google Scholar 

  102. Osculati F, Amati S, Petrini E, Francheschini F, Cinti S: Ultrastructural investigation on the Purkinje fibres of rabbit’s and cat’s heart. J Submicr Cytol 10: 185–197, 1978.

    Google Scholar 

  103. Osculati F, Amati S, Petrini E, Marelli M, Gazzanelli G: A study on the organization of the tubular endoplasmic reticulum in the rat heart conduction fibres. J Submicr Cytol 10: 371–380, 1978.

    Google Scholar 

  104. Robb JS: Comparative basic cardiology. New York: Grune and Stratton, 1965.

    Google Scholar 

  105. Sommer JR, Johnson EA: Cardiac muscle: a comparative study of Purkinje fibers and ventricular fibers. J Cell Biol 36: 497–526, 1968.

    Article  PubMed  CAS  Google Scholar 

  106. Kim S, Baba N: Atrioventricular node and Purkinje fibers of the guinea pig heart. Am J Anat 132: 339–354, 1971.

    Article  PubMed  CAS  Google Scholar 

  107. Thornell L-E: The fine structure of Purkinje fiber glycogen: a comparative study of negatively stained and cytochemically stained particles. J Ultrastruct Res 49: 157–166, 1974.

    Article  PubMed  CAS  Google Scholar 

  108. Thornell LE: An ultrahistochemical study on glycogen in cow Purkinje fibers. J Mol Cell Cardiol 6: 439–448, 1974.

    Article  PubMed  CAS  Google Scholar 

  109. Thornell LE: Ultrastructural variations of Z bands in cow Purkinje fibers. J Mol Cell Cardiol 5: 409–417, 1973.

    Google Scholar 

  110. Martinez-Palomo A, Alanis J, Benitez D: Transitional cardiac cells of the conductive system of the dog heart: distinguishing morphological and electrophysiological features. J Cell Biol 47: 1–17, 1970.

    Article  PubMed  CAS  Google Scholar 

  111. Thornell L-E, Ericksson A: Filament systems in the Purkinje fibers of the heart. Am J Physiol 241: H291 - H305, 1981.

    PubMed  CAS  Google Scholar 

  112. Weinstein HJ: An electron microscope study of cardiac muscle. Exp Cell Res 7: 130–146, 1954.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Forbes, M.S., Sperelakis, N. (1984). Ultrastructure of Mammalian Cardiac Muscle. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1171-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1171-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1173-8

  • Online ISBN: 978-1-4757-1171-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics