Skip to main content

Abstract

It is widely admitted that tumor induction occurs through a multistep process, the two first steps of which should be initiation and promotion (see Berenblum, 1975). Most carcinogens interact directly or indirectly with DNA to give rise to lesions on DNA which generally need to be repaired in order to permit the cell survival (Miller, 1978). The relationships between DNA repair and carcinogenesis become evident when studying some human syndromes such as xeroderma pigmentosum (XP), where patients develop skin cancer with a very high incidence after exposure to sun-light (Cleaver, 1968). The cells isolated from XP patients are unable to repair in vitro the DNA lesions, essentially pyrimidine dimers, made by UV-light. This result clearly indicates that unrepaired DNA lesions represent one of the first steps of carcinogenesis probably by giving rise to mutations due to incorrect base-pairing with the damaged base. Another way to get mutations is to use an error-prone repair pathway to repair lesions on DNA. Such an error-prone repair process has been well established in bacteria where it has been called the SOS repair pathway (Radman, 1975; Witkin, 1976; Devoret et al., 1977). Treatment of bacteria by various physical or chemical carcinogens, which inhibit DNA replication, induces the SOS repair pathway which will repair DNA lesions more efficiently but with a high rate of errors (Sarasin et al., 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berenblum, I., The probable nature of promoting action and its significance in the understanding of the mechanism of carcino-genesis, Cancer Res., 14: 471 (1954).

    PubMed  CAS  Google Scholar 

  • Berenblum, I., Origin of the concept of sequential stages of skin carcinogenesis, in: “Cancer: A comprehensive treatise,” Becker, ed., Plenum Press, New York (1975).

    Google Scholar 

  • Casto, B. C., Pieczynski, W. J., Janowsko, N., and Di Paolo, J. A., Significance of treatment interval and DNA repair in the enhancement of viral transformation by chemical carcinogens and mutagens, Chem. Biol. Interactions, 13: 105 (1976).

    Article  CAS  Google Scholar 

  • Cleaver, J. E., Defective repair replication of DNA in Xeroderma pigmentosum, Nature, 218: 652 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Devoret, R., Goze, A. Moulé, Y., and Sarasin, A., Lysogenic induction and induced phage reactivation by aflatoxin B1 metabolites, in: “Mécanismes d’alteration et de réparation du DNA: relation avec la mutagénèse et al cancérogénèse chimique,” R.

    Google Scholar 

  • Daudel, Y. Moulé, F. Zajdela, eds., C.N.R.S., Paris (1977).

    Google Scholar 

  • Diamond, L., Knorr, R., and Shimizu, Y., Enhancement of simian virus 40-induced transformation of Chinese hamster embryo cells by 4-nitroquinolíne-l-oxide, Cancer Res., 34: 2599 (1974).

    PubMed  CAS  Google Scholar 

  • Diamond, L., O’Brien, T. G., and Baird, W. B., Tumor promoters and the mechanism of tumor promotion, Adv. Cancer Res., 32: 1 (1980).

    Article  CAS  Google Scholar 

  • Feunteun, J., Kress, M., Gardes, M., and Monier, R., Viable deletion mutants in the simian virus 40 early region, Proc. Natl. Acad. Sci. USA, 75: 4455 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Fisher, P. B., Bozzone, J. H., and Weinstein, I. B., Tumor promoters and epidermal growth factor stimulate anchorage-independent growth of adenovirus transformed rat embryo cells, Cell, 18: 695 (1979a).

    Article  PubMed  CAS  Google Scholar 

  • Fisher, P. B., Dorsch-Häsler, K., Weinstein, I. B., and Ginsberg, H. S., Tumor promoters enhance anchorage-independent growth of adenovirus-transformed cells without altering the integration pattern of viral sequences, Nature, 281: 591 (1979b).

    Article  PubMed  CAS  Google Scholar 

  • Fisher, P. B., Weinstein, I. B., Eisenberg, D., and Ginsberg, H. S., Interactions between adenovirus, a tumor promoter, and chemical carcinogens in transformation of rat embryo cell cultures, Proc. Natl. Acad. Sci. USA, 75: 2311 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Fluck, M. M., and Benjamin, T., Comparisons of two early gene functions essential for transformation in polyoma virus and SV40, Virology, 96: 205 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Hecker, E., Isolation and characterization of the co-carcinogenic principles from croton oil, Meth. Cancer Res., 6: 439 (1971).

    CAS  Google Scholar 

  • Heidelberger, C., Mondai, S., and Peterson, A. R., Initiation and promotion in cell cultures, in: “Mechanisms of tumor promotion and cocarcinogenesis,” T. Slaga, A. Sivak, R. Boutwell, eds., Raven Press, New York (1978)

    Google Scholar 

  • Hirai, K., Defendi, V., and Diamond, L., Enhancement of simian virus 40 transformation and integration by 4-nitroquinoline-l-oxide, Cancer Res., 34: 3497 (1974).

    PubMed  CAS  Google Scholar 

  • Hynes, R. O., Alteration of cell-surface proteins by viral transformation and by proteolysis, Proc. Natl. Acad. Sci. USA, 70: 3170 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, A. R., Mondai, S., Heidelberger, C., and Little, J. B., Enhancement of x-radiation transformation by a phorbol ester using C3H 10 T 1/2 cl 8 mouse embryo fibroblasts, Cancer Res., 38: 439 (1978).

    PubMed  CAS  Google Scholar 

  • Kinsella, A. R., and Radman, M., Tumor promoter induces sister chromatid exchanges: relevance to mechanisms of carcinogenesis, Proc. Natl. Acad. Sci. USA, 75: 6149 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Lasne, C., Gentil, A., and Chouroulinkov, I., Two-stage malignant transformation of rat fibroblasts in tissue culture, Nature, 247: 490 (1974).

    Article  PubMed  CAS  Google Scholar 

  • MacPherson, I., and Montagnier, L., Agar suspension culture for the selective assay of cells transformed by polyoma virus, Virology, 23: 291 (1964).

    Article  PubMed  CAS  Google Scholar 

  • May, E., Kress, M., Daya-Grosjean, L., Monier, R., and May, P., Mapping of the viral mRNA encoding a super-T antigen of 115,000 daltons expressed in simian virus 40-transformed rat cell lines, J. Virol., 37: 24 (1981).

    PubMed  CAS  Google Scholar 

  • Miller, E. C., Some current perspectives on chemical carcinogenesis in humans and experimental animals, Cancer Res., 38: 1479 (1978).

    PubMed  CAS  Google Scholar 

  • Pollack, R., Osborn, M., and Weber, K., Patterns of organization of Actin and Myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA, 72: 994 (1975).

    Article  CAS  Google Scholar 

  • Pollack, R., Risser, R., Conlon, S., and Rifkin, D., Plasminogen activator production accompanies loss of anchorage regulation in transformation of primary rat embryo cells by simian virus 40, Proc. Natl. Acad. Sci. USA, 71: 4792 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Radman, M., SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis, in: “Molecular Mechanism for Repair of DNA,” P. C. Hanawalt, R. B. Setlow, eds., Plenum Press, New York (1975).

    Google Scholar 

  • Reznikoff, C. A., Bronkow, D. W., and Heidelberger, C., Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of cell division, Cancer Res., 33: 3231 (1973).

    PubMed  CAS  Google Scholar 

  • Sarasin, A., and Benoit, A., Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells, Mutation Res., 70: 71 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Sarasin, A., and Hanawalt, P. C., Carcinogens enhance survival of UV-irradiated simian virus 40 in treated monkey kidney cells: induction of a recovery pathway ? Proc. Natl. Acad. Sci. USA, 75: 346 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Sarasin, A., Goze, A., Devoret, R., and Moulé, Y., Induced reactivation of UV-damaged phage A in E. coli K12 host cells treated with aflatoxin B1 metabolites, Mutation Res., 42: 205 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Seif, R., Factors which disorganize microtubules of microfilaments increase the frequency of cell transformation by polyoma virua, J. Virol., 36: 421 (1980).

    PubMed  CAS  Google Scholar 

  • Shenk, T. E., Carbon, J., and Berg, P., Construction of analysis of viable deletion mutants of simian virus 40, J. Virol., 18: 664 (1976).

    PubMed  CAS  Google Scholar 

  • Sivak, A., and Van Duuren, B. L., Phenotypic expression of transformation: induction in cell culture by a phorbol ester, Science, 157: 1443 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Sleigh, M. J., Topp, W. C., Hanich, R., and Sambrook, J. F., Mutants of SV40 with an altered small t protein are reduced in their ability to transform cells, Cell, 14: 79 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Southern, G., Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol., 98: 503 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Tegtmeyer, P., Simian virus 40 DNA synthesis: the viral replicon, J. Virol., 10: 591 (1972).

    PubMed  CAS  Google Scholar 

  • Tooze, J., “DNA tumor viruses, molecular biology of tumor viruses (Part II),” Cold Spring Harbor Laboratory (1980).

    Google Scholar 

  • Trosko, E., Dawson, B., Yotti, L. P., and Chang, C. C., Saccharin may act as a tumor promoter by inhibiting metabolic cooperation between cells, Nature, 285: 109 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Vlodaysky, I., Inbar, M., and Sachs, L., Membrane changes and adenosine triphosphate content in normal and malignant transformed cells, Proc. Natl. Acad. Sci. USA, 70: 1780 (1973).

    Article  Google Scholar 

  • Witkin, E. M., Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Res., 40: 869 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daya-Grosjean, L., Monier, R., Sarasin, A. (1983). Effects of Various Promoters on Cell Transformation by Simian Virus 40 Mutants. In: Castellani, A. (eds) The Use of Human Cells for the Evaluation of Risk from Physical and Chemical Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1117-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1117-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1119-6

  • Online ISBN: 978-1-4757-1117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics