Skip to main content

Yang-Mills Theories with Global and Local Supersymmetry — Higgs and Superhiggs Effect in Unified Field Theories

  • Chapter
Book cover Introduction to Supersymmetry in Particle and Nuclear Physics
  • 254 Accesses

Abstract

The phenomenological success of the Glashow-Weinberg-Salam1 model in describing electromagnetic and weak interactions in a unified fashion and in embedding the Fermi theory of weak interactions in a renormalizable field theory has dramatically reproposed unified field theories as the correct theoretical framework for describing all elementary particle interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Glashow, Nucl. Phys. 22 (1961) 579;

    Article  Google Scholar 

  2. J.C. Ward and A. Salam, Phys. Lett. 13 (1964) 168;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Weinberg. Phys. Rev. Lett. 19 (1967) 1264.

    Article  ADS  Google Scholar 

  4. A. Salam, “Elementary Particle Theory”, ed. N. Svartholm, Alquimist and Wiksell, Stockholm, 1968, p. 367.

    Google Scholar 

  5. For reviews on supersymmetry see for instance: P. Fayet and S. Ferrara, Phys. Rep. 32C (1977) 251;

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Salam and J. Strathdee, Fortsch. Phys. 26 (1976) 57.

    Article  MathSciNet  ADS  Google Scholar 

  7. For a review see for instance: P. van Nieuwenhuizen, Phys. Rep. 68 (1981) 184.

    Google Scholar 

  8. R. Haag, J.T. Lopuszanski and M. Sohnius, Nucl. Phys. B88 (1975) 257.

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Coleman and J. Mandula, Phys. Rev. 159 (1967) 1251;

    Article  ADS  MATH  Google Scholar 

  10. L. O’Raifeartaigh, Phys. Rev. Lett. 14 (1965) 575

    Article  MathSciNet  ADS  Google Scholar 

  11. L. O’Raifeartaigh Phys. Rev. B139 (1965) 1052.

    Article  MathSciNet  ADS  Google Scholar 

  12. P. Fayet, Nucl. Phys. B113 (1976) 135.

    Article  MathSciNet  ADS  Google Scholar 

  13. F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122 (1977) 253

    Article  ADS  Google Scholar 

  14. L. Brink, J.H. Schwarz and J. Scherk, Nucl. Phys. B121 (1977) 11.

    MathSciNet  Google Scholar 

  15. S. Ferrara and B. Zumino, unpublished; M. Sohnius and P. West, Phys. Lett. 100B (1981) 245;

    MathSciNet  Google Scholar 

  16. K.S. Stelle, LPTENS preprint 81/24 (1981).

    Google Scholar 

  17. L. Maiani in Proceedings of the Summer School of Gif-sur-Yvette (1979), p. 3;

    Google Scholar 

  18. E. Witten, Nucl. Phys. B188 (1981) 313.

    Article  Google Scholar 

  19. S. Dimopoulos and S. Raby, Nucl. Phys. B192 (1981) 353.

    Article  ADS  Google Scholar 

  20. E. Gildener and S. Weinberg, Phys. Rev. D13 (1976) 3333;

    ADS  Google Scholar 

  21. S. Weinberg, Phys. Lett. 82B (1979) 387.

    MathSciNet  Google Scholar 

  22. G. Hooft, Cargese Lectures 1979, to be published; M. Veltman, Acta Physica Polonica, to be published;

    Google Scholar 

  23. Y.A. Gol’fand and E.P. Likhtam, JETP Lett. 13 (1971) 323;

    ADS  Google Scholar 

  24. D.V. Volkov and V.P. Akulov, Phys. Lett. 46B (1973) 109;

    Article  Google Scholar 

  25. J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39.

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Ferrara, B. Zumino and J. Wess, Phys. Lett. 51B (1974) 239.

    Google Scholar 

  27. A. Salam and J. Strathdee, Nucl. Phys. B80 (1974) 499

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Salam and J. Strathdee, Nucl. Phys. B84 (1975) 127; see also

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Ferrara, CERN preprint TH.2957 (1981), Plenary talk given at the 9th International Conference on General Relativity and Gravitation, Jena (1980), to be published.

    Google Scholar 

  30. See the third Ref. in (12) .

    Google Scholar 

  31. J. Wess and B. Zumino, Nucl. Phys. B78 (1974) 1.

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Salam and J. Strathdee, Nucl. Phys. B76 (1974) 477

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Ferrara and B. Zumino, Nucl. Phys. B79 (1974) 413;

    Article  ADS  Google Scholar 

  34. A. Salam and J. Strathdee, Phys. Lett. 51B (1974) 353.

    MathSciNet  Google Scholar 

  35. L. O’Raifeartaigh, Nucl. Phys. 56B (1975) 413

    Google Scholar 

  36. L. O’Raifeartaigh, Nucl. Phys. B89 (1975) 41 - B96 (1975) 331.

    Google Scholar 

  37. S. Ferrara, L. Girardello and F. Palumbo, Phys. Rev. D20 (1979) 403.

    Article  ADS  Google Scholar 

  38. J. Wess and B. Zumino, Phys. Lett 49B (1974) 52;

    Google Scholar 

  39. J. Iliopoulos and B. Zumino, Nucl. Phys. B76 (1974) 310;

    Article  ADS  Google Scholar 

  40. S. Ferrara, J. Iliopoulos and B. Zumino, Nucl. Phys. B77 (1974) 413;

    Article  ADS  Google Scholar 

  41. S. Ferrara and O. Piguet, Nucl. Phys. B93 (1975) 261.

    Article  ADS  Google Scholar 

  42. W. Fishler, H. Nilles, J. Polchinski, S. Raby and L. Susskind, Phys. Rev. Lett. 47 (1981) 757.

    Article  ADS  Google Scholar 

  43. P. Fayet in “Unification of the Fundamental Particle Interactions”, ed. by S. Ferrara, J. Ellis and P. van Nieuwenhuizen (Plenum Press, N. Y., 1980), p. 587.

    Chapter  Google Scholar 

  44. S. Weinberg, Harvard preprint HUTP 81/A047 (1981).

    Google Scholar 

  45. R. Barbieri, S. Ferrara and D.V. Nanopoulos, CERN preprint TH.3226 (1982).

    Google Scholar 

  46. E. Witten, Phys. Lett 105B (1981) 267

    MathSciNet  Google Scholar 

  47. S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150.

    Article  ADS  Google Scholar 

  48. L. Girardello and M.T. Grisaru, Brandeis University preprint (1981).

    Google Scholar 

  49. D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D13 (1976) 3214;

    MathSciNet  ADS  Google Scholar 

  50. S. Deser and B. Zumino Phys. Lett. 62B (1976) 335. For a recent review, see

    MathSciNet  Google Scholar 

  51. P. van Nieuwenhuizen, Phys. Rep. 68 no. 4 (1981) 189.

    Article  MathSciNet  ADS  Google Scholar 

  52. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, CERN preprint TH.3312 (1982) and CERN preprint TH.3348 (1982).

    Google Scholar 

  53. S. Ferrara, J. Scherck and P. van Nieuwenhuizen, Phys. Rev. Lett. 37 (1976) 1976;

    Google Scholar 

  54. S. Ferrara, L. Gliozzi, J. Scherk and P. van Nieuwenhuizen, Nucl. Phys. B117 (1976) 333;

    Article  ADS  Google Scholar 

  55. S. Ferrara and P. van Nieuwenhuizen, Phys. Lett. 76B (1978) 404

    MathSciNet  Google Scholar 

  56. K.S. Stelle and P.C. West, Phys. Lett. 77B (1978) 376.

    Google Scholar 

  57. D.V. Volkov and V.A. Soroka, JETP Lett. 18 (1973) 312;

    ADS  Google Scholar 

  58. S. Deser and B. Zumino, Phys. Rev. Lett. 38 (1977) 1433.

    Article  ADS  Google Scholar 

  59. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Phys. Lett. 79B (1978) 231

    Google Scholar 

  60. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Nucl. Phys. B147 (1979) 105.

    Article  ADS  Google Scholar 

  61. J. Ellis and D.V. Nanopoulos, CERN preprint TH.3319 (1982)

    Google Scholar 

  62. R. Barbieri, S. Ferrara, D.V. Nanopoulos and K.S. Stelle, CERN preprint TH. 3243 (1982), to appear in Phys. Lett. B.

    Google Scholar 

  63. K.S. Stelle and P.C. West, Nucl. Phys. B145 (1978) 175

    Article  ADS  Google Scholar 

  64. M. Sohnius and P.C. West, Phys. Lett. 105B (1981) 353.

    Google Scholar 

  65. H. Pagels and J. Primack, Phys. Rev. Lett. 48 (1982) 223;

    Article  ADS  Google Scholar 

  66. S. Weinberg, Phys. Rev. Lett. 48 (1982) 1303.

    Article  ADS  Google Scholar 

  67. For an attempt to use local supersymmetry in supercolour schemes in connection with the hierarchy problem, see: H.P. Nilles, CERN preprint TH.3294 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferrara, S. (1984). Yang-Mills Theories with Global and Local Supersymmetry — Higgs and Superhiggs Effect in Unified Field Theories. In: Castaños, O., Frank, A., Urrutia, L. (eds) Introduction to Supersymmetry in Particle and Nuclear Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0917-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0917-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0919-3

  • Online ISBN: 978-1-4757-0917-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics