Skip to main content

Population Structure and the Conundrum of Local Adaptation

  • Chapter

Abstract

The black pineleaf scale insect (Nuculaspis californica Coleman) is a parasite of western yellow pine (Pinus ponderosa Lawson) and 11 other conifer species (Ferris 1938; Furniss and Carolin 1977). The insects are short-lived relative to their host trees, largely sedentary, and achieve persistent, damaging infestations in areas where airborne dust or the drift of orchard insecticide compromises biological control agents. The abundance of black pineleaf scale varies within an infested stand and correlates with the age and size of the trees; larger, older pines harbor more scales than smaller, younger ones. In the same paper that laid out this basic biology, George Edmunds (1973, p. 765) was first to suggest that “scale populations apparently become adapted to specific host individuals, and population densities can become high only with genetic fitness of the population to the host species and individual.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alstad, D. N. and K. W. Corbin. 1990. Scale insect allozyme differentiation within and between host trees. Evol. Ecol. 4: 43–56.

    Article  Google Scholar 

  • Alstad, D. N. and G. F. Edmunds Jr. 1983a. Selection, outbreeding depression, and the sex ratio of scale insects. Science 220: 93–95.

    Article  PubMed  CAS  Google Scholar 

  • Alstad, D. N. and G. F. Edmunds Jr. 1983b. Adaptation, host specificity and gene flow in the black pineleaf scale. Pp. 413–426 in R. F. Denno and M. S. McClure (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.

    Google Scholar 

  • Alstad, D. N. and G. F. Edmunds Jr. 1987. Black pineleaf scale population density in relation to interdemic mating (Hemiptera: Diaspididae). Ann. Entomol. Soc. Am. 80: 652–654.

    Google Scholar 

  • Alstad, D. N. and G. F. Edmunds Jr. 1989. Haploid and diploid survival differences demonstrate selection in scale insect demes. Evol. Ecol. 3: 253–263.

    Article  Google Scholar 

  • Alstad, D. N., G. F. Edmunds Jr., and S. C. Johnson. 1980. Host adaptation, sex ratio, and flight activity in male black pineleaf scale. Ann. Entomol. Soc. Am. 73: 665–667.

    Google Scholar 

  • Baranyovits, F. 1953. Some aspects of the biology of armoured scale insects. Endeavour 12: 202–209.

    Google Scholar 

  • Beardsley, J. W. Jr. and R. H. Gonzalez. 1975. The biology and ecology of armored scales. Annu. Rev. Entomol. 20: 47–73.

    Google Scholar 

  • Bennett, F. D. and S. W. Brown. 1958. Life history and sex determination in the Diaspine scale, Pseudaulacaspis pentagona (Tang.) (Coccoidea). Can. Entomol. 90: 317–324.

    Article  Google Scholar 

  • Brown, S. W. 1958. Haplodiploidy in the Diaspididae-confirmation of an evolutionary hypothesis. Evolution 12: 115–116.

    Google Scholar 

  • Brown, S. W. 1965. Chromosomal survey of the armored and palm scale insects ( Coccoidea: Diaspididae and Phoenicococcidae ). Hilgardia 36: 189–294.

    Google Scholar 

  • Brown, S. W. and H. L. McKenzie. 1962. Evolutionary patterns in the armored scale insects and their allies. Hilgardia 33: 140–170.

    Google Scholar 

  • Bull, J. J. 1983. Evolution of Sex Determining Mechanisms. Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  • Bulmer, M. G. and P. D. Taylor. 1980. Dispersal and the sex ratio. Nature 284: 448–449.

    Article  Google Scholar 

  • Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton University Press Monographs in Population Biology #18.

    Google Scholar 

  • Crow, J. F. and M. Kimura. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Crozier, R. H. 1985. Adaptive consequences of male-haploidy. Pp. 201–222 in W. Helle and M. W. Sabelis (Eds.), Spider Mites: Their Biology, Natural Enemies and Control Vol. lA. Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Edmunds, G. F. Jr. 1973. Ecology of black pineleaf scale (Homoptera: Diaspididae). Environ. Entomol. 2: 765–777.

    Google Scholar 

  • Edmunds, G. F. Jr. and D. N. Alstad. 1978. Coevolution in insect herbivores and conifers. Science 199: 941–945.

    Google Scholar 

  • Edmunds, G. F. Jr. and D. N. Alstad. 1981. Responses of black pineleaf ccales to host plant variability. Pp. 29–38 in R. F. Denno and H. Dingle (Eds.), Insect Life History Patterns. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Edmunds, G. F. Jr. and D. N. Alstad. 1985. Malathion induced sex ratio changes in black pineleaf scale. Ann. Entomol. Soc. Am. 70: 403–405.

    Google Scholar 

  • Endler, J. A. 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Frank, S. A. 1993. Evolution of host-parasite diversity. Evolution 47: 1721–1732.

    Article  Google Scholar 

  • Ferris, G. F. 1937–1955. Atlas of the Scale Insects of North America. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Furniss, R. L. and V. M. Carolin. 1977. Western Forest Insects. USDA Forest Service Michigan Publications No. 1339.

    Google Scholar 

  • Hairston, N. G. Sr. 1989. Ecological Experiments, Purpose, Design, and Execution. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hamilton, W. D. 1967. Extraordinary sex ratios. Science 156: 477–488.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W. D. 1982. Pathogens as causes of genetic diversity in their host populations. Pp. 269–296 in R. M. Anderson and R. M. May (Eds.), Population Biology of Infectious Diseases. Dahlem Konferenzen, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Hartl, D. and A. G. Clark. 1989. Principles of Population Genetics. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hayat, M. 1983. The genera of Aphelinidae (Hymenoptera) of the world. Syst. Entomol. 8: 63–102.

    Google Scholar 

  • Herre, E. A. 1985. Sex ratio adjustment in fig wasps. Science 228: 896–898.

    Google Scholar 

  • Jaenike, J. 1981. Criteria for ascertaining the existence of host races. Am. Nat. 117: 830–834.

    Google Scholar 

  • Linhart, Y. B., J. B. Mitton, K. B. Sturgeon, and M. L. Davis. 1979. An analysis of genetic architecture in populations of ponderosa pine. Proc. Symp. on Isozymes of North American Forest Trees and Forest Insects. USDA Forest Service, July 27, 1979. Berkeley, CA.

    Google Scholar 

  • Linhart, Y. B., J. B. Mitton, K. B. Sturgeon, and M. L. Davis. 1981. Genetic variation in space and time in a population of ponderosa pine. Heredity 46: 407–426.

    Article  Google Scholar 

  • Lively, C. M. 1987. Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328: 519–521.

    Article  Google Scholar 

  • Luck, R. F. 1973. Natural decline of an insecticide induced outbreak of the pine needle scale, Chionaspis pinifoliae (Fitch) at South Lake Tahoe, California. Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Luck, R. E and D. L. Dahlsten. 1974. Bionomics of the pine needle scale, Chionaspis pinifoliae and its natural enemies at South Lake Tahoe, California. Ann. Entomol. Soc. Am. 67: 309–316.

    Google Scholar 

  • Luck, R. F. and D. L. Dahlsten. 1975. Natural decline of a pine needle scale (Chionaspis pinifoliae) outbreak at South Lake Tahoe, California following cessation of adult mosquito control with malathion. Ecology 56: 893–904.

    Article  Google Scholar 

  • Maynard Smith, J. 1978. The Evolution of Sex. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • McCauley, D. E. and W. F. Eanes. 1987. Hierarchical population structure analysis of the milkweed beetle, Tetraopes tetraophthalmus ( Forster ). Heredity 58: 193–201.

    Google Scholar 

  • Michod, R. E. and B. R. Levin (Eds.). 1988. The Evolution of Sex. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Miller, D. R. and M. Kosztarab. 1979. Recent advances in the study of scale insects. Annu. Rev. Entomol. 24: 1–27.

    Google Scholar 

  • Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11: 235–238.

    Google Scholar 

  • Murdoch, W. W., J. D. Reeve, C. B Huffaker, and C. E. Kennett. 1984. Biological control of olive scale and its relevance to ecological theory. Am. Nat. 123: 371–392.

    Article  Google Scholar 

  • Neel, J. B. and R. H. Ward. 1972. The genetic structure of a tribal population, the Yanomama Indians: VI. Analysis by F-statistics including a comparison with the Makiritare and Xavante. Genetics 72: 639–666.

    CAS  Google Scholar 

  • Nei, M. 1977. F-statistic and analysis of gene diversity in subdivided populations. Ann. Hum. Genet., London 41: 225–233.

    Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nunney, L. 1985a. Female-biased sex ratios: Individual or group selection? Evolution 39: 349–361.

    Google Scholar 

  • Nunney, L. 1985b. Group selection, altruism, and structured-deme models. Am. Nat. 126: 212–230.

    Google Scholar 

  • Nur, U. 1967. Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealy bug. Genetics 56: 375–389.

    PubMed  CAS  Google Scholar 

  • Nur, U. 1971. Parthenogenesis in coccids. Am. Zool. 11: 301–308.

    Google Scholar 

  • Rice, W. R. 1983. Parent-offspring pathogen transmission: A selective agent promoting sexual reproduction. Am. Nat. 121: 187–203.

    Google Scholar 

  • Seger, J. and W. D. Hamilton. 1988. Parasites and sex. Pp. 176–193 in R. E. Michod and B. R. Levin (Eds.), The Evolution of Sex: An Examination of Current Ideas. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Stoetzel, M. B. and J. A. Davidson. 1974. Sexual dimorphism in all stages of the Aspidiotini (Homoptera: Diaspididae). Ann. Entomol. Soc. Am. 67: 138–140.

    Google Scholar 

  • Taylor, P. D. and M. G. Bulmer 1980. Local mate competition and the sex ratio. J. Theor. Biol. 86: 409–419.

    Google Scholar 

  • Unruh, T. R. and R. F. Luck. 1987. Deme formation in scale insects: A test with the pinyon needle scale and review of other evidence. Ecol. Entomol. 12: 439–449.

    Article  Google Scholar 

  • Weir, B. S. 1990. Genetic Data Analysis. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Weir, B. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.

    Google Scholar 

  • Werren, J. H. 1980. Sex ratio adaptations to local mate competition in a parasitic wasp. Science 208: 1157–1159.

    Google Scholar 

  • Williams, G. C. 1975. Sex and evolution. Monographs in Population Biology 8. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Wilson, D. S., and R. K. Colwell 1981. Evolution of sex ratio in structured demes. Evolution 35: 882–897.

    Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15: 323–354.

    Google Scholar 

  • Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.

    Article  Google Scholar 

  • Wright. S. 1978. Evolution and the Genetics of Populations: Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alstad, D. (1998). Population Structure and the Conundrum of Local Adaptation. In: Mopper, S., Strauss, S.Y. (eds) Genetic Structure and Local Adaptation in Natural Insect Populations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0902-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0902-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0904-9

  • Online ISBN: 978-1-4757-0902-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics