Skip to main content

Evolutionary Aspects of Photoresponsive Systems

  • Chapter
Molecular Models of Photoresponsiveness

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 68))

  • 54 Accesses

Abstract

A major factor in the survival of an organism is its ability to communicate with and respond to its environment. Among the environmental factors is a portion of the electromagnetic spectrum, from about 400 to 760 nm, which we define as visible light. In the course of evolution, many photoresponsive systems have developed, some highly complex, some relatively simple. Generally speaking, they have the capabilities of detecting the presence or absence of light, the direction of a light source and, in some cases, can even measure absolute quantities of visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.K. Clayton, Photophysiology 2: 51 (1964).

    Google Scholar 

  2. A. Perez-Miravete, “Behavior of Microorganisms,” Plenum Press, New York (1973).

    Google Scholar 

  3. K.W. Foster and R.D. Smyth, Microbiol. Rev. 44:572 (1980).

    Google Scholar 

  4. B. Diehn in ref. 2.

    Google Scholar 

  5. A.D. Lees, Photophysiology 4: 47 (1968).

    Google Scholar 

  6. J. Brady, Adv. Insect Physiol. 10: 1 (1974).

    Article  Google Scholar 

  7. D.S. Farner, R.A. Lewis, Photophysiology 6: 325 (1971).

    Google Scholar 

  8. B. Lofts, B.K. Follett, R.K. Murton, Mem. Soc. Endocrinol. 18:545 (1970).

    Google Scholar 

  9. W. Shropshire, Jr., Photophysiology 7: 33 (1972).

    Google Scholar 

  10. W.R. Briggs and H.V. Rice, Ann. Rev. Plant Physiol. 23:293 (1972).

    Google Scholar 

  11. S.B. Hendricks, Photophysiology 1: 305 (1964).

    Google Scholar 

  12. K. Thimann, Compr. Biochem. 27:1 (1967).

    Google Scholar 

  13. R.Y. Moore, Nature 222: 781 (1969).

    Google Scholar 

  14. R.J. Wurtman, Ann. Rev. Physiol. 37: 467 (1975).

    Article  Google Scholar 

  15. F. Melberg, Proc. Roy. Soc. Med. 56:253 (1963).

    Google Scholar 

  16. D.T. Krieger and F. Rizzo, Neuroendocrinology 8: 165 (1971).

    Google Scholar 

  17. F.S. Messiha, T. Hartman and I. Geller, Res. Comm. Path. Pharmacol. 10:399 (1975).

    Google Scholar 

  18. D. Oesterhelt, Angew. Chemie Int. Ed. Engl. 15:17 (1976).

    Google Scholar 

  19. E. Racker and W. Stoeckenius, J. Biol. Chem. 249:662 (1974).

    Google Scholar 

  20. M. Melkonium and H. Robenik, J. Ultrastruct. Res. 72:129 (1980).

    Google Scholar 

  21. G.G. Leedale, B.J.D. Meeuse and E.G. Pringsheim, Arch. Mikrobiol. 50:68 (1965).

    Google Scholar 

  22. R. M. Eakin, in “Visual Cells in Evolution,” J.A. Westfall, ed., Raven Press, New York (1982).

    Google Scholar 

  23. L.v. Salvini-Plawen, in ref. 22.

    Google Scholar 

  24. F.F. Litvin, 0.A. Sineshchekov and V.A. Sineshchekov, Nature 271: 476 (1978).

    Google Scholar 

  25. S. Yoshikami, J.S. George and W.A. Hagins, Nature 286: 395 (1980).

    Article  Google Scholar 

  26. J.J. Wolken, “Invertebrate Photoreceptors,” Academic Press, New York/London (1971).

    Google Scholar 

  27. B.F. Erlanger, Ann. Rev. Biochem. 45:267 (1976).

    Google Scholar 

  28. W. Shropshire, Jr., Photophysiology 7: 33 (1972).

    Google Scholar 

  29. W.R. Briggs and H.V. Rice, Ann. Rev. Plant Physiol. 23:293 (1972).

    Google Scholar 

  30. G.H. Brown in “Photochromism,” Vol. III, “Techniques in Chemistry,” A. Weissberger, ed., Wiley-Interscience, New York (1971).

    Google Scholar 

  31. B.F. Erlanger and N.H. Wassermann, in “Trends in Photobiology,” C. Helene, M. Charlier, Th. Montenay-Garestier and G. Laustriat, eds., Plenum Press, New York and London (1982).

    Google Scholar 

  32. F. Lenci in ref. 31.

    Google Scholar 

  33. R.M. Page and G.M. Curry, Photochem. Photobiol.5:31 (1966).

    Google Scholar 

  34. A.Q. van Zon, W.P.J. Overmeer and A.Veerman, Science 213: 1131 (1981).

    Google Scholar 

  35. W.F. Zimmerman and T.H. Goldsmith, Science 171: 1167 (1971).

    Google Scholar 

  36. S.B. Hendricks and H.A. Borthwick, Proc. Nat. Acad. Sci. 58:2125 (1967).

    Google Scholar 

  37. P.H. Quail in ref. 31.

    Google Scholar 

  38. M.J. Burke, D.C. Pratt and A. Moscowitz, Biochemistry 11: 4025 (1972).

    Article  Google Scholar 

  39. W.-F. Tong and P. Schopfer, Proc. Nat. Acad. Sci. 73:4017 (1976).

    Google Scholar 

  40. J.K. Lanyi, Microbiol. Rev. 42:682 (1978).

    Google Scholar 

  41. R.R. Birge, Ann. Rev. Biophys. Bioeng. 10:315 (1981).

    Google Scholar 

  42. L. Packer, A.T. Quintanilha, C. Carmeli, P.D. Sullivan, P. Scherrer, S. Tristram, J. Herz, A.Pfeifhofer and R.J. Mehlhorn, Photochem. Photobiol. 33:579 (1981).

    Google Scholar 

  43. Y.A. Ovchinnikov, N.G. Abdulaev, M.Y. Feigina, A.V. Kiselev and N.A. Lobanov, FEBS Lett. 100: 219 (1979).

    Article  Google Scholar 

  44. G.P. Hess and J.A. Rupley, Ann. Rev. Biochem. 40:1013 (1971). 44a J.T. Edsall and J. Wyman, “Biophysical Chemistry,” Vol. 1, Academic Press, New York (1958).

    Google Scholar 

  45. B.F. Erlanger, A.G. Cooper and W. Cohen, Biochemistry 5: 190 (1966).

    Article  Google Scholar 

  46. M. Chabre in ref. 31.

    Google Scholar 

  47. W.L. Hubbell and M.D. Bownds, Ann. Rev. Neurosci. 2:17 (1979).

    Google Scholar 

  48. D.H. Hug, Photochem. Photobiol. Rev. 3:1 (1978).

    Google Scholar 

  49. J. Monod, J-P. Changeux and F. Jacob, J. Mol. Biol. 6:306 (1963).

    Google Scholar 

  50. D.E. Koshland and K.E. Neet, Annu. Rev. Biochem. 37:359 (1968).

    Google Scholar 

  51. H.E. Umbarger, Annu. Rev. Biochem. 47:533 (1978).

    Google Scholar 

  52. G. Montagnoli, S. Monti, L. Nannicini, M.P. Giovannitti and M.G. Ristori, Photochem. Photobiol. 27:43 (1978).

    Google Scholar 

  53. M. Aizawa, K. Namba and S. Suzuki, Arch. Biochem. Biophys. 180:41 (1977).

    Google Scholar 

  54. M. Blank, L.M. Soo, N.H. Wassermann and B.F. Erlanger, Science 214: 70 (1981).

    Google Scholar 

  55. S. Shinkai, T. Nakaji, Y. Nishida, T. Ogawa and 0. Manabe, J. Am. Chem. Soc. 102:5860 (1980).

    Google Scholar 

  56. S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu and 0. Manabe, J. Am. Chem. Soc. 103:111 (1981).

    Google Scholar 

  57. S. Shinkai, T. Ogawa, Y. Kusano, 0. Manabe, K. Kikukawa, T. Goto and T. Matsuda, J. Am. Chem. Soc. 104:1960 (1982).

    Google Scholar 

  58. S. Shinkai, T. Minami, Y. Kusano and 0. Manabe, J. Am. Chem. Soc. 104:1967 (1982).

    Google Scholar 

  59. J.J. Grimaldi, S. Boileau and J-M. Lehn, Nature 265: 229 (1977).

    Article  Google Scholar 

  60. J.S. Schultz, Science 197: 1177 (1977).

    Article  Google Scholar 

  61. I.V. Berezin, S.D. Varfolomeyev, A.M. Klibanov and K. Martinek, FEBS Lett. 39: 329 (1974).

    Article  Google Scholar 

  62. S.D. Varfolomeyev, A.M. Klibanov, K. Martinek and I.V. Berezin, FEBS Lett. 15: 118 (1971).

    Article  Google Scholar 

  63. J.M. Mountz and H.T. Tien, Photochem. Photobiol. 29:93 (1979).

    Google Scholar 

  64. J.R. Duchek and J.S. Huebner, Biophys. J. 27:317 (1979).

    Google Scholar 

  65. D. Balasubramanian, S. Subramani and C. Kumar, Nature 254: 252 (1975).

    Article  Google Scholar 

  66. W. Zillig, R. Schnabel and J. Tu, Naturwissenschaften 69: 197 (1982).

    Article  Google Scholar 

  67. D. Kennedy, Photophysiology 2: 79 (1964).

    Google Scholar 

  68. A. Arvanitaki and N. Chalazonitis, in “Nervous Inhibition,” E. Florey, ed., pp. 194–231 New York: Pergamon (1961).

    Google Scholar 

  69. C.L. Prosser, J. Cell.Comp. Physiol. 4:363 (1934).

    Google Scholar 

  70. M.S. Bruno and D. Kennedy, Comp. Biochem. Physiol. 6:41 (1962).

    Google Scholar 

  71. R.F. Furchgott, W. Sleator,Jr., M.W. McCaman and J. Elchlepp, J. Pharmacol. Exp. Ther. 113:22 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erlanger, B.F. (1983). Evolutionary Aspects of Photoresponsive Systems. In: Montagnoli, G., Erlanger, B.F. (eds) Molecular Models of Photoresponsiveness. NATO Advanced Science Institutes Series, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0896-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0896-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0898-1

  • Online ISBN: 978-1-4757-0896-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics