Skip to main content

The Functions and Components of the Anaerobic Respiratory Electron Transport Systems in Rhodobacter Capsulatus

  • Chapter
Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria

Part of the book series: FEMS Symposium ((FEMSS))

Abstract

The traditional view of Rhodobacter capsulatus has been of an organism that could grow either phototrophically under anaerobic conditions or aerobically in the absence of illumination. Recognition of anaerobic respiration as a characteristic of R. capsulatus is relatively recent (Ferguson et al., 1987). Nitrate, dimethylsulphoxide (DMSO), trimethylamine-N-oxide (TMAO) and nitrous oxide have been identified as anaerobic electron acceptors, but not all strains can use each of these oxidants. In non-phototrophic bacteria the function of enzymes that allow electron transport to terminate with the reduction of an anaerobic electron acceptor is to permit non-fermentative growth in the absence of oxygen. In some instances this function also applies to the anaerobic respiratory electron transport pathways in R. capsulatus, but, as will be discussed in this paper, phototrophic growth can be facilitated by the possession of the capacity to reduce electron acceptors under anaerobic conditions. The presence in R. capsulatus of certain anaerobic electron transport pathways also provides opportunities to study these pathways because R. capsulatus is much better characterised in terms of its genetics and complement of electron transport proteins than many of the organisms that have been longer recognised to perform anaerobic respiration. R. capsulatus should not be thought of as distinct amongst phototrophs in its possession of anaerobic respiratory pathways; a strain of Rhodobacter sphaeroides catalyses the complete set of denitrification reactions from nitrate to nitrogen gas (Urata and Satoh, 1985; Ito et al., 1989) whilst several other genera of photosynthetic bacteria have been shown to reduce nitrous oxide (McEwan et al., 1985a). Thus it is probable that much of what is discussed here for R. capsulatus will also be applicable to other related organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boogerd, F.C., van Verseveld, H.W., and Stouthamer, A.H., 1980, Electron transport to nitrous oxide in Paracoccus denitrificans, FEBS Lett. 113: 279.

    Article  PubMed  CAS  Google Scholar 

  • Daldal, F., Cheng, S., Applebaum, J. Davidson, E. and Prince, R.C., 1986, Cytochrome c2 is not essential for photosynthetic growth of Rhodopseudomonas capsulata, Proc. Natl. Acad. Sci. U.S. 83: 2012.

    Article  CAS  Google Scholar 

  • Daldal, F., Davidson, E. and Cheng, S.,1987, Isolation of the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c1, all components of the ubiquinol; cytochrome c2 oxidoreductase complex of Rhodopseudomonas capsulata, J. Mol. Biol. 195: 1.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, S.J., 1988a, Periplasmic electron transport reactions, in: “Bacterial Energy Transduction”, C. Anthony ed., Academic press, London.

    Google Scholar 

  • Ferguson, S.J., 1988b, The redox reactions of the nitrogen and sulphur cycles, in: “The Nitrogen and Sulphur Cycles”, J.A. Cole and S.J. Ferguson eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Ferguson, S.J., Jackson, J.B., and McEwan, A.G., 1987, Anaerobic respiration in the Rhdospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis, FEMS Microbiol. Lett., 46: 117.

    Article  CAS  Google Scholar 

  • Itoh, M., Mizukami, K., and Satoh, T., 1989, Involvement of cytochrome bcl complex and cytochrome c2 in the electron-transfer pathway for NO reduction in a photodenitrifier, Rhodobacter sphaeroides f.s. denitrificans, FEBS Lett. 244: 81.

    Article  Google Scholar 

  • Kelly, D.J., Richardson, D.J., Ferguson, S.J. and Jackson, J.B., 1988, Isolation of transposon Tn5 insertion mutants of Rhodobacter capsulatus unable to reduce trimthylamine-Noxide and dimethylsulphoxide, Arch. Microbiol. 150: 138

    Article  CAS  Google Scholar 

  • King, G.F., Richardson, D.J., Jackson, J.B. and Ferguson, S.J., 1987, Dimethylsulphoxide and trimethylamine-N-oxide as bacterial electron accpetors: use of nuclear magnetic resonance to assay and characterise the reductase system in Rhodobacter capsulatus, Arch. Microbiol. 149: 47.

    Article  CAS  Google Scholar 

  • Lascelles, J., 1960, The formation of ribulose-1,5-diphosphate carboxylase by growing cultures of Athiorhodaceae, J. Gen Microbiol. 23: 499.

    Article  PubMed  CAS  Google Scholar 

  • Madigan, M.T. and Gest, H., 1978, Growth of a photosynthetic bacterium anaerobically in darkness, supported by “oxidant dependent” sugar fermentation, Arch. Microbiol. 117; 119.

    Article  PubMed  CAS  Google Scholar 

  • McEwan, A.G., George, C.L., Ferguson, S.J. and Jackson, J.B., 1982, A nitrate reductase activity in Rhodopseudomonas capsulatus linked to electron transfer and generation of a membrane potential, FEBS Lett. 150: 277.

    Article  CAS  Google Scholar 

  • McEwan, A.G., Ferguson, S.J., and Jackson, J.B., 1983, Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata, Arch. Microbiol. 136, 300.

    Article  PubMed  CAS  Google Scholar 

  • McEwan, A.G., Jackson, J.B., and Ferguson, S.J., 1984, Rationalisation of properties of nitrate reductase in Rhodopseudomonas capsulata, Arch. Microbiol. 137: 344.

    Article  CAS  Google Scholar 

  • McEwan, A.G., Greenfield, A.J., Wetzstein, H.G., Jackson, J.B., and Ferguson, S.J., 1985a, Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata, J. Bacteriol. 164: 823.

    PubMed  CAS  Google Scholar 

  • McEwan, A.G., Wetzstein, H.G., Jackson, J.B., and Ferguson, S.J., 1985b, Periplasmic location of the terminal reductase in trimethylamine-N-oxide and dimethylsulphoxide respiration in the photosynthetic bacterium Rhodopseudomonas capsulata, Biochim. Biophys. Acta 806: 410.

    Article  CAS  Google Scholar 

  • McEwan, A.G. Cotton, N.P.J., Ferguson, S.J., and Jackson, J.B., 1985c, The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria, Biochim. Biophys. Acta, 810: 140

    Article  CAS  Google Scholar 

  • McEwan, A.G., Wetzstein, H.G., Meyer, O., Jackson, J.B., and Ferguson, S.J., 1987, The periplasmic nitrate reductase of Rhodobacter capsulatus; purification, characterisation and distinction from a single reductase for trimethylamine-Noxide, dimethylsulphoxide and chlorate, Arch. Microbiol., 147: 340.

    Article  CAS  Google Scholar 

  • McEwan, A.G., Richardson, D.J., Hudig, H., Ferguson, S.J., and Jackson, J.B., 1989, Identification of cytochromes involved in electron transport to trimethylamine-N-oxide/ dimethylsulphoxide in Rhodobacter capsulatus, Biochim. Biophys. Acta 973: 308.

    Article  CAS  Google Scholar 

  • Richardson, D.J., Kelly, D.J., Jackson, J.B., Ferguson, S.J. and Alef, K., 1986, Inhibitory effects of myxothiazol and 2-n-heptyl-4-hydroxyquinoline-N-oxide on the auxiliary electron transport pathways of Rhodobacter capsulatus, Arch. Microbiol. 146: 159.

    Article  CAS  Google Scholar 

  • Richardson, D.J., King, G.F., Kelly, D.J., McEwan, A.G., Ferguson, S.J., and Jackson, J.B., 1988, The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate, Arch. Microbiol. 150: 138.

    Article  Google Scholar 

  • Richardson, D.J., 1989, Ph. D Thesis University of Birmingham.

    Google Scholar 

  • Richardson, D.J., McEwan, A.G., Jackson, J.B. and Ferguson, S.J., 1989, Electron transport pathways to nitrous oxide in Rhodobacter species, Eur. J. Biochem. in press.

    Google Scholar 

  • Schulz, J.E. and Weaver, P.F., 1982, Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata, J. Bacteriol. 149: 181.

    Google Scholar 

  • Takamiya, K., Arata, H., Shioi, Y. and Doi, M., 1988, Restoration of the optimal redox state for the photosynthetic electron transfer system by auxiliary oxidants in an aerobic photosynthetic bacterium Erythrobacter sp. OCh 114, Biochim. Biophys. Acta 935: 26.

    Article  CAS  Google Scholar 

  • Urata, K. and Satoh, T., 1985, Mechanism of nitrite reduction to nitrous oxide in a photodenitrifier Rhodopseudomonas sphaeroides f. sp. denitrificans, Biochim. Biophys. Acta 841, 201–207.

    Article  CAS  Google Scholar 

  • Wesch, R. and Klemme, J.H., 1980, Catalytic and molecular differences between assimilatory nitrate reductases isolated from two strains of Rhodopseudomonas capsulata, FEMS Microbiol. Lett. 8: 37.

    Article  CAS  Google Scholar 

  • Yen, H.C., and Marrs, B.L., 1977, Growth of Rhodopseudomonas capsulatus under dark anaerobic conditions with dimethylsulfoxide, Arch Biochem Biophys 181: 411.

    Article  PubMed  CAS  Google Scholar 

  • Zumft, W.G. and Matsubara, T., 1982, A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus, FEBS Lett. 148: 107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

McEwan, A.G., Richardson, D.J., Jones, M.R., Jackson, J.B., Ferguson, S.J. (1990). The Functions and Components of the Anaerobic Respiratory Electron Transport Systems in Rhodobacter Capsulatus . In: Drews, G., Dawes, E.A. (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria. FEMS Symposium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0893-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0893-6_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0895-0

  • Online ISBN: 978-1-4757-0893-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics