Skip to main content

What Happens During the Latent Period at Fertilization

  • Chapter
Mechanisms of Egg Activation

Abstract

A period of several seconds to half a minute can elapse between the initial interaction of the fertilizing sperm with the egg and the initiation of the calcium wave that causes global egg activation. It has been called the latent period. We discuss experiments that have shed light on what is happening during the latent period. We suggest that the latent period reflects the transfer of an activating messenger from the sperm to the egg through a labile fusion pore. The latent period ends when the messenger triggers the increase in cytoplasmic calcium that consolidates the labile fusion state and then sweeps across the egg, activating it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. D. and J. L. Griffin. 1958. The time sequence of early events in the fertilisation of sea urchin eggs. 1. The latent period and the cortical reaction. Exp. Cell Res. 15: 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F. and R. Presley. 1969. Kinetic evidence for an intermediate stage in the fertilization of the sea urchin egg. Nature (Land.) 221: 488–490.

    Article  CAS  Google Scholar 

  • Berridge, M. J. 1987. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J. and R. F. Irvine. 1984. Inositol trisphosphate, a novel second messenger in signal transduction. Nature (Load.) 312: 315–318.

    Article  CAS  Google Scholar 

  • Blinks, J. R., F. G. Prendergast, and D. G. Allen. 1976. Photo-proteins as biological calcium indicators. Pharmacol. Rev. 28: 1–93.

    PubMed  CAS  Google Scholar 

  • Brandriff, B, R. I. Hinegardner, and R. A. Steinhardt. 1975. Development and lifecycle of the parthenogenetically activated sea urchin embryo. J. Exp. Zool. 192: 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Busa, W. B. and R. Nuccitelli. 1985. An elevated cytosolic calcium wave follows fertilization in the eggs of the frog Xenopus laevis. J. Cell Biol. 100: 1325–1329.

    Article  CAS  Google Scholar 

  • Byrd, W. and G. Perry. 1980. Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Exp. Cell Res. 126: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Calvin, W. H. 1975. Generation of spike trains in CNS neurones. Brain Res. 84: 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, E. L. and J. de Armendi. 1979. Membrane potential, action potential and activation potential of the eggs of the sea urchin Lytechinus variegatus. Exp. Cell Res. 122: 203–218.

    Article  CAS  Google Scholar 

  • Ciapa, B. and M. J. Whitaker. 1986. Two phases of inositol polyphosphate and diacylglycelol production at fertiliation. FEBS Lett. 195: 137–140.

    Article  Google Scholar 

  • Clapper, D. L., T. F. Walseth, P. J. Dargie, and H.-C. Lee. 1987. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262: 9561–9568.

    PubMed  CAS  Google Scholar 

  • Cline C. A., H. Schatten, R. Balczon, and G. Schatten. 1983. Actin-mediated surface motility during sea urchin fertilization. Cell Motil. 3: 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft, S. and B. D. Gomperts. 1985. Role of guanine nucleotides in the activation of phosphoinositide phospho-diesterase. Nature (Lond.) 314: 534–536.

    Article  CAS  Google Scholar 

  • Cole, K. S. and H. J. Curtis. 1938. Transverse electrical impedance of the squid giant axon. J. Gen. Phvsiol. 22: 757–765.

    Google Scholar 

  • Crank, J. 1975. The Mathematics of Diffusion. Oxford University Press, London.

    Google Scholar 

  • Dale, B., L. J. DeFelice, and V. Taglietti. 1978. Membrane noise and conductance increase during single spermatozoon-egg interactions. Nature (Load.) 275: 217–219.

    Article  CAS  Google Scholar 

  • Dale, B, L. J. DeFelice, and G. Ehrenstein. 1985. Injection of a soluble sperm fraction into sea-urchin eggs triggers the cortical reaction. Experientia 41: 1068–1070.

    Article  PubMed  CAS  Google Scholar 

  • David, C., J. Halliwell, and M. J. Whitaker. 1988. Some properties of the membrane currents underlying the fertilization potential in sea urchin eggs. J. Physiol. (Lond.) 402: 139–154.

    CAS  Google Scholar 

  • Eisen, A., D. P. Kiehart, S. J. Wieland, and G. T. Reynolds. 1984. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs. J. Cell Biol. 99: 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  • Epel, D. and C. Patton. 1985. Cortical granules of sea urchin eggs do not undergo exocytosis at the site of sperm-egg fusion. Dev. Growth and Differ. 27: 361–369.

    Article  Google Scholar 

  • Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds. 1978. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J. Cell Biol. 76: 448–466.

    Article  CAS  Google Scholar 

  • Hamaguchi, Y. and I. Mabuchi. 1988. Accumulation of fluorescently labeled actin in the cortical layer in sea urchin eggs after fertilization. Cell Motil. Cytoskeleton. 9: 153–163.

    Google Scholar 

  • Hinckley, R. E., B. D. Wright, and J. W. Lynn. 1986. Rapid visual detection of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Dev. Biol. 118: 148–154.

    Article  Google Scholar 

  • Hulser, D. and G. Schatten. 1982. Bioelectric responses at fertilization: separation of the events associated with insemination from those due the the cortical reaction in the sea urchin Lytechinus variegatus. Gamete Res. 5: 363–377.

    Article  Google Scholar 

  • Jaffe, L. A. 1976. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature (Lond.) 261: 68–71.

    Article  CAS  Google Scholar 

  • Jaffe, L. F. 1980. Calcium explosions as triggers of development. Annu. NY Acad. Sci. 339: 86–101.

    Article  CAS  Google Scholar 

  • Jaffe, L. F. 1983. Sources of calcium in egg activation: a review and hypothesis. Dev. Biol. 99: 256–276.

    Article  Google Scholar 

  • Kopf, G. S., D. J. Tubb, and D. L. Garbers. 1979. Activation of sperm respiration by a low molecular weight egg factor and by 8-bromoguanosine 3-,5’-monophosphate. J. Biol. Chem. 254: 8554–8560.

    PubMed  CAS  Google Scholar 

  • Kubota, H. Y., Y. Yoshimoto, Y. Yoneda, and Y. Hiramoto. 1987. Free calcium wave upon activation in Xenopus eggs. Dev. Biol. 119: 126–136.

    Article  Google Scholar 

  • Longo, F. J. 1978. Effects of cytochalasin B on sperm-egg interactions. Der. Biol. 67: 249–265.

    CAS  Google Scholar 

  • Longo, F. J., J. W. Lynn, D.H. McCulloh, and E. L. Chambers. 1986. Correlative ultrastructural and electrophysiological studies of sperm-egg interactions of the seaurchin, Lytechnus variegatus. Dev. Biol. 118: 155–166.

    Article  CAS  Google Scholar 

  • Lynn, J. W. and E. L. Chambers. 1984. Voltage clamp studies of fertilization in sea urchin eggs. I. Effect of clamped membrane potential on sperm entry, activation and development. Dev. Biol. DD 102: 98–109.

    Article  PubMed  CAS  Google Scholar 

  • Lynn, J. W., D. H. McCulloh, and E. L. Chambers. 1988. Voltage clamp studies of fertilization in sea urchin eggs. II. Current patterns in relation to sperm entry, nonentry and activation. Dev. Biol. 128: 305–323.

    Article  PubMed  CAS  Google Scholar 

  • Mannhertz, H. G. 1968. ATP-Spaltung and ATP-Diffusion in oscillierenden extrahiertenMuskelfasern. Pfluegers Arch. Gesamte Physiol. 303: 230–248.

    Article  Google Scholar 

  • McCulloh, D. H. and E. L. Chambers. 1986. When does the sperm fuse with the egg? J. Gen. Physiol. 88: 38–39a.

    Google Scholar 

  • McCulloh, D. H., J. W. Lynn, and E. L. Chambers. 1987. Membrane depolarization facilitates sperm entry, large fertilization cone formation and prolonged current responses in sea urchin oocytes. Dev. Biol. 124: 177–190

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, S., N. Hashimoto, Y. Yoshimoto, T. Kishimoto, Y. Igusa, and Y. Hiramoto. 1986. Temporal and spatial dynamics of the periodic increase in intracellular calcium at fertilization of golden hamster eggs. Dev. Biol. 118: 259–267.

    Article  PubMed  CAS  Google Scholar 

  • Presley, R. and P. F. Baker. 1970. Kinetics of fertilization in the sea urchin: a comparison of methods. J. Exp. Biol. 52: 455–468.

    Google Scholar 

  • Ridgway, E. B., J. C. Gilkey, and L. F. Jaffe. 1977. Free calcium increases explosively in activating medaka eggs. Proc. Natl. Acad. Sci. USA. 74:623–627.

    Google Scholar 

  • Rodbell, M. 1980. The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature (Lond.) 284: 17–20.

    Article  CAS  Google Scholar 

  • Shen, S. S. and R. A. Steinhardt. 1984. Time and voltage windows for reversing the electrical block to fertilization. Proc. Nat! Acad. Sci. USA. 81: 1436–1439.

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt, R. A., R. S. Zucker, and G. Schatten. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Swann, K. and M. J. Whitaker. 1986. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J. Cell Biol. 103: 2333–2342.

    Article  PubMed  CAS  Google Scholar 

  • Swann, K., B. Ciapa, and M. J. Whitaker. 1987. Cell messengers and sea urchin egg activation. p. 45–69. In: Molecular Biology of Invertebrate Development. D. O’Connor (Ed). Alan R. Liss, New York.

    Google Scholar 

  • Turner, P. R., L. A. Jaffe, and A. Fein. 1986. Regulation of cortical granule exocytosis by inositol 1,4,5-trisphosphate and GTP binding protein. J. Cell Biol. 102: 70–76.

    Article  PubMed  CAS  Google Scholar 

  • Turner, P. R., L. A. Jaffe, and P. Primakoff. 1987. A cholera-toxin sensitive G-protein stimulates exocytosis in sea urchin eggs. Dev. Biol. 120: 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, M. J. and R. A. Steinhardt. 1982. Ionic regulation of egg activation. Q. Rev. Biophys. 15: 593–666.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, M. J. and R. F. Irvine. 1984. Microinjection of inositol torsposphate activates sea urchin eggs. Nature (Lond.) 312: 636–638.

    Article  CAS  Google Scholar 

  • Whitaker, M. J. and J. Aitchison. 1985. Calcium-dependent phosphoinositide hydrolysis is associated with exocytosis in vitro FEBS Lett. 182: 119–124.

    Article  CAS  Google Scholar 

  • Williams, D. A., K. E. Fogarty, R. Y. Tsien, and F. S. Fay. 1985. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature (Load.) 318: 558–561.

    Article  CAS  Google Scholar 

  • Yoshimoto, Y., T. Iwamatsu, K. Hirano, and Y. Hiramoto. 1987. The wave pattern of free calcium released upon fertilization in medaka and sand dollar eggs. Dev. Growth and Differ. 28: 583–596.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whitaker, M., Swann, K., Crossley, I. (1989). What Happens During the Latent Period at Fertilization. In: Nuccitelli, R., Cherr, G.N., Clark, W.H. (eds) Mechanisms of Egg Activation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0881-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0881-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0883-7

  • Online ISBN: 978-1-4757-0881-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics