Skip to main content

Electrical Capacitance and Membrane Area

  • Chapter
Mechanisms of Egg Activation
  • 42 Accesses

Abstract

Almost 200 years of scientific inquiry were necessary to understand that the electric skate produced its powerful electrical discharge by summing the membrane depolarizations of the cells in each prism in series and having all the prisms in parallel. Cavendishs’ “battery” consisted of 40 Leyden jars, the only means for storing electricity at that time, made of especially thin glass and should have been capable of holding an appreciable charge.

“There seems, however, to be room in the fish for a battery of a sufficient size; for Mr. Hunter* has shown, that each of the prismatical columns of which the electrical organ is composed, is divided in a great number of partitions of fine membranes......and if the glass is five times as thin, which is perhaps not thinner than the membranes which form the partitions, it will contain five times as much electricity, or near fourteen times as much as my battery.”

From: An account of some attempts to imitate the effects of the torpedo by electricity: By the Hon. HENRY CAVENDISH, F.R.S. Philosophical Transactions for 1776, Vol. LXVI Part I pp. 196-225. Art. 437.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W. R., R. T. Kado, and J. Didio. 1962. Impedance measurements in brain tissue of chronic animals using microvolt signals. Exp. Neurol. 5: 47–66.

    Article  PubMed  CAS  Google Scholar 

  • Adrian, R. H. and W. Almers. 1974. Membrane capacity measurements on frog skeletal muscle in media of low ion content. J. Physiol. (Lond.) 237: 573–605.

    CAS  Google Scholar 

  • Charbonneau, M. and D. J. Webb. 1987. Weak bases partially activate Xenopus eggs and permit changes in membrane conductance whilst inhibiting cortical granule exocytosis. J. Cell Science. 87: 205–220.

    PubMed  CAS  Google Scholar 

  • Clausen, C. and J. M. Fernandez. 1981. A low cost method for rapid transfer function measurement with direct application to biological impedance analysis. Pfluegers Arch. Eur. J. Physiol. 390: 290–295.

    Article  CAS  Google Scholar 

  • Cole, K. S. 1968. Membranes, ions and impulses. University of California Press, Berkeley. De Felice, L. J. 1981. Introduction to membrane noise. Plenum Press, New York.

    Google Scholar 

  • Gogelein, H. and W. Van Driessche. 1981. Capacitive and inductive low frequency impedances of Necturus gallbladder epithelium. Pfluegers Arch. Eur. J. Physiol. 389: 105–113.

    Article  CAS  Google Scholar 

  • Jaffe, L. A., S. Hagiwara, and R. T. Kado. 1978. The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Dev. Biol. 67: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L. A. and L. C. Schlichter. 1985. Fertilization-induced ionic conductances in eggs of the frog, Rana pipiens. J. Physiol. 358: 299–319.

    CAS  Google Scholar 

  • Jaffe, L. F. and R. Nuccitelli. 1974. An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63: 614–628.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, C. and J. M. Fernandez. 1988. Capacitance measurements. Biophys. J. 53: 885–892.

    Article  PubMed  CAS  Google Scholar 

  • Kado, R. T. and W. R. Adey. 1965. Method for the measurement of impedance changes in brain tissue. 6th Intl. Conf. on Medical Electronics and Biological Engineering, Tokyo.

    Google Scholar 

  • Kado, R. T. 1978. The time course of cortical granule fusion in the fertilized and non-fertilized sea urchin egg. Biol. Cell. 32: 141–148.

    Google Scholar 

  • Kado, R. T., K. Marcher, and R. Ozon. 1981. Electrical membrane properties of the Xenopus laevis oocyte during progesterone-induced meiotic maturation. Dev. Biol. 84: 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Kline, D., L. Simmoncini, G. Mandel, R. Maue, R. T. Kado, and L. A. Jaffe. 1988. Fertilization events induced by neurotransmitters after injection of mRNA in Xenopus eggs. Science 24: 464–467.

    Article  Google Scholar 

  • Kolin, A. and R. T. Kado. 1959a. Simple photoelectric demodulator. J. Sci. Instrum. 37: 107.

    Article  Google Scholar 

  • Kolin, A. and R. T. Kado. 1959b. Miniaturization of the electromagnetic blood flow meter and its use for the recording of circulatory responses of conscious animals to sensory stimuli. Proc. Natl. Acad. Sci. USA. 45: 1312–1321.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch, D. and E. L. Chambers. 1986. When does the sperm fuse with the egg? Abstr. 40th Annu. Meeting Soc. of Gen. Physiol. 38a.

    Google Scholar 

  • Moody, W. J. and M. M. Bosma. 1985. Hormone-induced loss of surface membrane during maturation of starfish oocytes: differential effect on potassium and calcium channels. Dev. Biol. 112: 396–404.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, M., H. Ohmori, and S. Sasaki. 1975. Potassium rectifications of the starfish oocyte membrane and their changes during oocyte maturation. J. Physiol. (Lond.) 246: 55–78.

    CAS  Google Scholar 

  • Neher, E. and A. Marty. 1982. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci USA. 79: 6712–6716.

    Article  PubMed  CAS  Google Scholar 

  • Niles, W. D., R. A. Levis, and F. S. Cohen. 1985. Planar bilayer membrane made from phospholipid monolayers form by a thinning process. Biophys. J. 53: 327–335.

    Article  Google Scholar 

  • Nuccitelli, R. 1980. The electrical changes accompanying fertilization and cortical vesicle secretion in the medaka egg. Dey. Biol. 76: 483–498.

    Article  CAS  Google Scholar 

  • Peres, A. and G. Bernardini. 1985. The effective membrane capacity of Xenopus eggs: its relations with membrane conductance and cortical granule exocytosis. Pfluegers Arch. Eur. J. Physiol. 404: 266–272.

    Article  CAS  Google Scholar 

  • Ross, S. M, J. M. Ferrier, and J. Dainty. 1985. Frequency-dependent membrane impedance in Chara coralm estimated by Fourier analysis. J. Membr. Biol. 85: 233–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kado, R.T. (1989). Electrical Capacitance and Membrane Area. In: Nuccitelli, R., Cherr, G.N., Clark, W.H. (eds) Mechanisms of Egg Activation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0881-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0881-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0883-7

  • Online ISBN: 978-1-4757-0881-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics