Skip to main content

Hadroproduction of Heavy Flavours

  • Chapter
Gauge Interactions

Part of the book series: The Subnuclear Series ((SUS,volume 20))

  • 74 Accesses

Abstract

Hidden charm in the form of the J/ψ) was discovered in 19741, naked charm in the form of the D meson in 19762 (though the first example3 of Λc+ was probably seen in 1975), hidden beauty in the form of the T in 19774, and naked beauty through its decay kaons and electrons in 19805. Even though the partner of the beauty, the top, is still to be discovered, and heavier flavours may exist, there is now a tendency, in these days when enterprising people are hunting for intermediate vector bosons, Higgs bosons, SUSY particles, proton decay, neutrino oscillations, etc., to take the world of heavy flavours for granted, or at best as a subject for e+ecolliders. However, there are several compelling reasons to pursue a vigorous effort in this field with proton machines:

  1. i)

    A heuristic reason is that, contrary to prevailing prejudice, most of the first evidence for new flavours was found, directly or indirectly, in hadronic interactions. This was the case for pions and strange particles (cosmic rays) and all their resonances (bubble chambers) -- for lack of competition, one may say -- but, more recently, this was true also for the J, the T, the Λc, the Σc, the F (as opposed to the ψ, D, D*, and B for the e+ecolliders) and there are still many charmed particles and all of the B particles to find! As for the naked top the competition is open between the SPS pp collider and the boosted-up PETRA. If the mass of the top is too high and/or if heavier flavours exist, only the pp colliders (at CERN or FNAL) remain in the game -- until the advent of TRISTAN, SLC, and LEP.

  2. ii)

    Another heuristic reason is that fixed-target experiments with high-energy beams (γ or hadrons) are the only way, thanks to the Lorentz dilation of time, to measure very small lifetimes, as are expected for beauty particles (τ r 10−14 cm →λ ≲ 100 μm at p ≃ 150 GeV/c). In the same line of thought, hyperon and kaon beams should be a good way to produce charmed-strange particles (A, F+,...).

  3. iii)

    Finally, a more profound motivation to study hadroproduction of heavy flavours lies in the fact that it falls in a domain of relatively large Q2’s where QCD should apply -- and hence, as for the Drell-Yan process or the high-pi phenomena, QCD should have a predictive power which can be tested by experiment. As we shall see, this is not yet quite the case for charm production, though qualitatively our understanding has progressed a lot over the last two years; experimental data on beauty production, which involves higher Q2 ‘s, should be extremely valuable, as well as more complete results on charm production versus energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Aubert et al., Phys. Rev. Lett. 33: 1404 (1974).

    Article  Google Scholar 

  2. J. E. Augustin et al., Phys. Rev. Lett. 33: 1406 (1974).

    Article  Google Scholar 

  3. G. Goldhaber et al., Phys. Rev. Lett. 37: 255 (1976).

    Article  Google Scholar 

  4. E. G. Cazzoli et al., Phys. Rev. Lett. 34: 1125 (1975).

    Article  Google Scholar 

  5. S. W. Herb et al., Phys. Rev. Lett. 39: 252 (1977).

    Article  Google Scholar 

  6. CLEO Collaboration (presented by E. H. Thorndike), “First results on bare b-physics”, Proc. XX ICHEP“, Madison, Wisc., 1980 (L. Durand and L. G. Pondrom, eds.) ( AIP, New York, 1981 ), p. 705.

    Google Scholar 

  7. G. H. Trilling, Phys. Reports 75: 57 (1981).

    Article  Google Scholar 

  8. N. Ushida et al., Papers 547 and 835 submitted to the XXI ICHEP, Paris (1982).

    Google Scholar 

  9. N. Ushida et al., Phys. Rev. Lett. 48: 844 (1982).

    Article  Google Scholar 

  10. M. Adamovitch et al., Paper 843 submitted to the XXI ICHEP, Paris (1982).

    Google Scholar 

  11. K. Abe et al., Paper 735 submitted to the XXI ICHEP, Paris (1982).

    Google Scholar 

  12. M. Aguilar-Benitez et al., preprint CERN-EP/82–188 (1982), to be published in Phys. Letters.

    Google Scholar 

  13. A. Bardetscher et al., Paper 789 submitted to the XXI ICHEP, Paris (1982), and to be published in Phys. Letters.

    Google Scholar 

  14. E. Albini et al., Phys. Lett. 110B: 339 (1982).

    Article  Google Scholar 

  15. S. R. Amendiola et al., Paper 742 submitted to the XXI ICHEP, Paris (1982).

    Google Scholar 

  16. Mark II Collaboration, “Measurement of the D° lifetime”, contributed paper to the XXI ICHEP, Paris (1982).

    Google Scholar 

  17. G. J. Feldman et al., Phys. Rev. Lett. 48: 66 (1982).

    Article  Google Scholar 

  18. G. Kalmus, Rapporteur’s talk at the XXI ICHEP, Paris, 1982 (P. Petiau and M. Porneuf, eds.) (J. Phys. 43, Coll. C3, Paris, 1982 ), p. 431.

    Google Scholar 

  19. S. B. Treiman and A. Pais, Phys. Rev. D 15: 2529 (1977).

    Article  Google Scholar 

  20. L. Maiani and N. Cabibbo, Phys. Lett. 73B: 418 (1978).

    Article  Google Scholar 

  21. D. Aston et al., Phys. Lett. 94B:113 (1980) and 100B: 91 (1981).

    Article  Google Scholar 

  22. E. Vella et al., Phys. Rev. Lett. 48: 1515 (1982).

    Article  Google Scholar 

  23. S. F. Biagi et al., preprint CERN-EP/83–09 (1983).

    Google Scholar 

  24. L. Maiani, Rapporteur’s talk at the ICHEP, Paris, 1982 (P. Petiau and M. Porneuf, eds.) (J. Phys. 43, Coll. C3, Paris, 1982 ), p. 631.

    Google Scholar 

  25. M. Veltman, Nucl. Phys. B123: 89 (1977).

    Article  Google Scholar 

  26. N. Cabibbo et al., Nucl. Phys. B158: 295 (1979).

    Article  Google Scholar 

  27. J. G. Branson et al., Phys. Rev. Lett. 38: 334 (1977).

    Article  Google Scholar 

  28. J. Badier et al., Proc. XX ICHEP, Madison, Wisc. 1980 (L. Durand and L. G. Pondrom, eds.), ( AIP, New York, 1981 ), p. 201.

    Google Scholar 

  29. P. C. Bosetti et al., Phys. Lett. 74B: 143 (1978);

    Article  Google Scholar 

  30. P. Alibran et al., Phys. Lett. 74B: 134 (1978);

    Article  Google Scholar 

  31. T. Hansi et al., Phys. Lett. 74B: 139 (1978).

    Article  Google Scholar 

  32. D. S. Barton et al., preprint FNAL-Pub 82/64-EXP, submitted to Phys. Rev. D.

    Google Scholar 

  33. W. Geist, private communication.

    Google Scholar 

  34. S. Wojcicki, Proc. XX ICHEP, Madison, Wisc., 1980 (L. Durand and L. G. Pondrom, eds.) ( AIP, New York, 1981 ), p. 1430.

    Google Scholar 

  35. F. Muller, “Status of charmed particles”, in The high-energy limit ( A. Zichichi, ed.) ( Plenum Press, New York, 1982 ), p. 627.

    Google Scholar 

  36. F. Muller, Proc. IV Warsaw Smyposium on Elementary Particle Physics, Kazimierz, 1981 (Z. Ajduk and K. Doroba, eds.) (Inst. of Theor. Phys., Warsaw, 1981 ), p. 141.

    Google Scholar 

  37. R. J. N. Phillips, Proc. XX ICHEP, Madison, Wisc., 1980 (L. Durand and L. G. Pondrom, eds.) ( AIP, New York, 1981 ), p. 1470.

    Google Scholar 

  38. A. M. Georgi et al., Ann. of Phys. 114: 273 (1978).

    Article  Google Scholar 

  39. C. E. Carlson and R. Suaya, Phys. Lett. 81B: 329 (1979).

    Article  Google Scholar 

  40. M. Gluck and E. Reya, Phys. Lett. 79B:453 (1978) and 83B: 98 (1979).

    Article  Google Scholar 

  41. K. L. Giboni et al., Phys. Lett. 85B: 437 (1979);

    Article  Google Scholar 

  42. W. Lockman et al., Phys. Lett. 85B: 443 (1979);

    Article  Google Scholar 

  43. D. Drijard et al., Phys. Lett. 85B: 452 (1979).

    Article  Google Scholar 

  44. D. Drijard et al., Phys. Lett. 81B: 250 (1979).

    Article  Google Scholar 

  45. A. Zichichi, “Heavy flavours at the ISR”, Proc. ICHEP, Lisbon, 1981 (J. Dias de Deus and J. Soffer, eds.) ( EPS, Lisbon, 1982 ), p. 1167.

    Google Scholar 

  46. B. L. Combridge, Nucl. Phys. B151:426 (1979). B. L. Combridge, “Theoretical approaches to charm hadroproduc-tion”, Proc. Moriond Workshop on New Flavours. Les Arcs,1982 (J. Tran Thanh Van and L. Montanet, eds.) (Ed. Frontières, Gif-sur-Yvette, 1982 ), p. 451.

    Google Scholar 

  47. A. J. Buras and K. J. F. Gaemers, Nucl. Phys. B132: 148 (1978).

    Article  Google Scholar 

  48. G. Gustafson and C. Peterson, Phys. Lett. 67B: 81 (1977).

    Article  Google Scholar 

  49. H. Fritzsch and K. H. Streng, Phys. Lett. 78B: 447 (1978).

    Article  Google Scholar 

  50. S. J. Brodsky et al., Phys. Lett. 93B:451 (1980) and Phys. Rev. D 23: 2745 (1981).

    Article  Google Scholar 

  51. L. J. Koester et al., “Diffractive hadronic production of D-mesons”, Proc. XX ICHEP, Madison, Wisc., 1980 (L. Durand and L. G. Pondrom, eds.) ( AIP, New York, 1981 ), p. 190.

    Google Scholar 

  52. J. J. Aubert et al., “Production of charmed particles in 250 GeV -iron interactions”, preprint CERN-EP/82–153 (1982);

    Google Scholar 

  53. J. J. Aubert et al., Phys. Lett. 110B: 73 (1982).

    Article  Google Scholar 

  54. D. P. Roy, “On the indication of hard charm in the latest EMC dimuon data”, Bombay preprint TIFR/TH/83–1 (1983).

    Google Scholar 

  55. V. Barger et al., Phys. Rev. D 25:112 (1982) and D 24: 1428 (1981).

    Article  Google Scholar 

  56. M. Aguilar-Benitez et al., CERN-EP/82–203 (1982), to be published in Phys. Lett.

    Google Scholar 

  57. F. Halzen, rapporteur’s talk at the XXI ICHEP, Paris, 1982 (P. Petiau and M. Porneuf, eds.) (J. Phys. 43, Coll. C3 Paris, 1982 ), p. 381.

    Google Scholar 

  58. M. Aguilar-Benitez et al., preprint CERN-EP/82–204 (1982), to be published in Phys. Lett.

    Google Scholar 

  59. J. Gunion, Phys. Lett. 88B: 150 (1979).

    Article  Google Scholar 

  60. T. Aziz et al., Nucl. Phys. B199: 424 (1982).

    Article  Google Scholar 

  61. C. Daum et al., “Inclusive charm production in high energy T-/p + Be interactions”, contributed paper to the XXI ICHEP, Paris, 1982.

    Google Scholar 

  62. V. L. Fitch et al., Phys. Rev. Lett. 46: 761 (1981).

    Article  Google Scholar 

  63. A. N. Aleev et al., preprint JINR–E1–82–759 (1982).

    Google Scholar 

  64. R. C. Ball et al., “Beam dump neutrino experiment”, contributed paper to the XXI ICHEP, Paris, 1982.

    Google Scholar 

  65. M. Jonker et al., Proc. XX ICHEP, Madison, Wisc. 1980 (L. Durand and L. G. Pondrom, eds.) ( AIP, New York, 1981 ), p. 242.

    Google Scholar 

  66. H. Abramowicz et al., CERN-EP/82–17 (1982) and Z. Phys. C13: 179 (1982).

    Google Scholar 

  67. A. Bodek et al., “Pion and proton beam dump”, contributed paper to the XXI ICHEP, Paris, 1982.

    Google Scholar 

  68. M. Barone et al., Nucl. Phys. B132:29 (1978), and references therein.

    Google Scholar 

  69. M. M. Block et al., Nucl. Phys. B140: 525 (1978).

    Article  Google Scholar 

  70. W. Geist, Proc. Moriond Workshop on New Flavours, Les Arcs, 1982 (J. Tran Thanh Van and L. Montanet, eds.) (Ed. Frontières, Gif-sur-Yvette, 1982), p. 407. M. Heiden, Thesis, University of Heidelberg (1981).

    Google Scholar 

  71. D. Blockus et al., Nucl. Phys. B201: 197 (1982).

    Article  Google Scholar 

  72. R. Rückl, Phys. Lett. 64B:39 (76).

    Google Scholar 

  73. R. Odorico, Phys. Lett. 107B:231 (1981) and Bologna preprint IFUB 82 /3 (1982).

    Google Scholar 

  74. See also P. Mazzanti and S. Wada, Bologna preprint IFUB 82/9 (1982), and K. Kurek and L. Lukaszuk, “The hadroproduction of heavy flavours”, Warsaw preprint (1982).

    Google Scholar 

  75. J. Badier et al., preprint CERN-EP/83–12 (1983), submitted to Phys. Lett.

    Google Scholar 

  76. A. Diamant-Berger et al., Phys. Rev. Lett. 44: 82 (1982).

    Google Scholar 

  77. A. Bodek et al., Phys. Lett. 113B: 82 (1982).

    Article  Google Scholar 

  78. J. Coignet, Proc. ICHEP, Lisbon, 1981 (J. Dias de Deus and J. Soffer, eds.) ( EPS, Lisbon, 1982 ), p. 789.

    Google Scholar 

  79. H. Fritzsch, Phys. Lett. 94B: 84 (1980).

    Article  Google Scholar 

  80. D. Andrews et al., Cornell report CLNS 82 /547 (1982).

    Google Scholar 

  81. R. N. Coleman et al., Phys. Rev. Lett. 44: 1313 (1980).

    Article  Google Scholar 

  82. R. Barate et al., preprint CERN-EP/82–171 (1982), to be published in Phys. Lett. B.

    Google Scholar 

  83. J. P. Albanese et al., preprint CERN EP/82–183 (1982), to be published in Phys. Lett. B.

    Google Scholar 

  84. G. Arnison et al., CERN-EP/83–02 (1983), to be published in Phys. Lett. B.

    Google Scholar 

  85. D. M. Scott, “Getting to the top”, Cambridge preprint DAMTP 82 /1 (1982).

    Google Scholar 

  86. W.-Y. Keung, L.-L. Chau and S. C. C. Ting, “Multilepton study for search of new flavors and the Higgs boson”, Brookhaven preprint BNL 29598 (1981).

    Google Scholar 

  87. S. Pakvasa et al., Ph. Rev. D 20: 2862 (1979).

    Article  Google Scholar 

  88. R. Horgan and M. Jacob, Phys. Lett. 1078: 395 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muller, F. (1984). Hadroproduction of Heavy Flavours. In: Zichichi, A. (eds) Gauge Interactions. The Subnuclear Series, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0749-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0749-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0751-9

  • Online ISBN: 978-1-4757-0749-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics