Skip to main content

Part of the book series: Topics in Geobiology ((TGBI,volume 3))

Abstract

It is perhaps ironic that the editors of this book would emphasize in their own contribution that certain patterns of biotic interactions found in modern soft-bottom communities are not likely to be preserved in the fossil record and that the interpretation of some preserved patterns is problematical. But this is our conclusion with respect to successions on soft bottoms. After examining both live and dead shelled faunas of nearshore clastic facies, we also conclude that the areal distribution of fossil species cannot be used to establish with certainty the dominant controls of the distribution of living fauna. But these conclusions are provisional, and more subtle and clever analysis may eventually vitiate our pessimism and better explain the causes for some distributional patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. R., 1977, Growth, morphology and ecology of Paleozoic and Mesozoic opportunistic species of brachiopods from Idaho—Utah, J. Paleontol. 51: 1133–1149.

    Google Scholar 

  • Alexandersson, E. T., 1976, Actual and anticipated petrographic effects of carbonate undersaturation in shallow sea water, Nature (London) 262: 653–657.

    CAS  Google Scholar 

  • Aller, R. C., 1980, Diagenetic processes near the sediment—water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P), Adv. Geophys. 22: 237–350.

    CAS  Google Scholar 

  • Aller, R. C., 1982a, The effects of macrobenthos on chemical properties of marine sediment and overlying water, in: Animal—Sediment Relations ( P. L. McCall and M. J. S. Tevesz, eds.), pp. 53–102, Plenum Press, New York.

    Google Scholar 

  • Aller, R. C., 1982b, Carbonate dissolution in nearshore terrigenous muds: The role of physical and biological reworking, J. Geol. 90: 79–95.

    CAS  Google Scholar 

  • Aller, R. C., and Cochran, J. K., 1976, 234Th/238U disequilibrium in nearshore sediment: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 29: 37–50.

    CAS  Google Scholar 

  • Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sci. Lett. 47: 161–175.

    CAS  Google Scholar 

  • Bambach, R. K., and Sepkoski, J. J., Jr., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. Abstr. Progr. 11: 383.

    Google Scholar 

  • Benninger, L. K., Aller, R. C., Cochran, J. K., and Turekian, K. K., 1979, Effects of biological sediment mixing on the 210Pb chronology and trace metai distribution in a Long Island Sound sediment core, Earth Planet. Sci. Lett. 43: 241–259.

    CAS  Google Scholar 

  • Blevgad, H., 1925, Continued studies on the quantity of fish-food in the sea bottom, Rep. Dan. Biol. Stn. 31: 27–56.

    Google Scholar 

  • Bokuniewicz, H. J., and Gordon, R. B., 1980, Sediment transport and deposition in Long Island Sound, Adv. Geophys. 22: 69–106.

    Google Scholar 

  • Bokuniewicz, H. J., Gebert, J., and Gordon, R. B., 1976, Sediment mass balance of a large estuary, Long Island Sound, Estuarine Coastal Mar. Sci. 4: 523–536.

    Google Scholar 

  • Brenchley, G. A., 1981, Disturbance and community structure: An experimental study of bioturbation in marine soft-bottom environments, J. Mar. Res. 34: 767–790.

    Google Scholar 

  • Bretsky, P. W., and Bretsky, S. S., 1975, Succession and repetition of Late Ordovician fossil assemblages from the Nicolet River Valley, Quebec, Paleobiology 1: 225–237.

    Google Scholar 

  • Chapman, V. J., 1968, The Algae, St. Martin’s Press, New York.

    Google Scholar 

  • Clements, F. E., 1916, Plant succession: An analysis of the development of vegetation, Carnegie Inst. Washington Publ. 242.

    Google Scholar 

  • Connell, J. H., 1961, The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus, Ecology 42: 710–723.

    Google Scholar 

  • Connell, J. H., 1972, Community interactions on marine rocky intertidal shores, Annu. Rev. Ecol. Syst. 3: 169–192.

    Google Scholar 

  • Connell, J. H., and Slayter, R. O., 1977, Mechanisms of succession in natural communities and their role in community stability and organization, Am. Nat. 111: 1119–1144.

    Google Scholar 

  • Cooper, W. S., 1923, The recent ecological history of Glacier Bay, Alaska. II. The present vegetation cycles, Ecology 4: 93–222.

    Google Scholar 

  • Cooper, W. S., 1931, A third expedition to Glacier Bay, Alaska, Ecology 12: 61–95.

    Google Scholar 

  • Cowles, H. C., 1911, The causes of vegetative cycles, Bot. Gaz. 51: 161–183.

    Google Scholar 

  • Dayton, P. K., 1971, Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community, Ecol. Monogr. 41: 351–389.

    Google Scholar 

  • Dayton, P. K., 1973, Two cases of resource partitioning in an intertidal community: Making the right prediction for the wrong reason, Am. Nat. 107: 662–670.

    Google Scholar 

  • Dayton, P. K., 1975, Experimental evaluation of ecological dominance in a rocky intertidal algal community, Ecol. Monogr. 45: 137–159.

    Google Scholar 

  • Dayton, P. K., and Oliver, J. S., 1980, An evaluation of experimental analyses of population and community patterns in benthic marine environments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 93–120, University of South Carolina Press, Columbia.

    Google Scholar 

  • Dodge, R. E., and Vaisnys, J. R., 1980, Skeletal growth chronologies of Recent and fossil corals, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), pp. 493–517, Plenum Press, New York.

    Google Scholar 

  • Driscoll, E. G., 1975, Sediment–animal–water interaction, Buzzards Bay, Massachusetts, J. Mar. Res. 33: 275–302.

    Google Scholar 

  • Drury W. H., and Nisbet, I. C. T., 1973, Succession, Arnold Arbor. J. 54: 331–368.

    Google Scholar 

  • Egler, F. E., 1954, Vegetation science concepts. 1. Initial floristic composition—a factor in old field vegetation development, Vegetatio 4: 412–417.

    Google Scholar 

  • Fager, E. W., 1964, Marine sediments: Effects of a tube-building polychaete, Science 143: 356–359.

    CAS  PubMed  Google Scholar 

  • Frankland, J. C., 1966, Succession of fungi on Pteridium petioles, J. Ecol. 54: 41–63.

    Google Scholar 

  • Fridriksson, S., 1975, Surtsey, Wiley, New York.

    Google Scholar 

  • Fürsich, F. T., 1978, The influence of faunal condensation and mixing on the preservation of fossil benthic communities, Lethaia 11: 243–250.

    Google Scholar 

  • Ginsburg, R. N., 1956, Environmental relationships of grain size and constituent particles in some south Florida carbonate sediments, Bull. Am. Assoc. Petrol. Geol. 40: 2384–2427.

    Google Scholar 

  • Gleason, H. A., 1917, The structure and development of the plant association, Bull. Torrey Bot. Club 43: 463–481.

    Google Scholar 

  • Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26: 417–450.

    CAS  Google Scholar 

  • Goldring, R., and Kazmierczak, J., 1974, Ecological succession in intraformational hardground formation, Paleontology 17: 949–962.

    Google Scholar 

  • Golley, F. B., 1977, Ecological Succession, Dowden, Hutchinson and Ross, Stroudsburg, Pa.

    Google Scholar 

  • Gordon, R. B., 1980, The sedimentary system of Long Island Sound, Adv. Geophys. 22: 139.

    Google Scholar 

  • Gould, S. J., 1976, Paleontology plus ecology as paleobiology, in: Theoretical Ecology: Principles and Applications ( R. M. May, ed.), pp. 218–236, Saunders, Philadelphia.

    Google Scholar 

  • Gould, S. J., 1980, The promise of paleobiology as a nomothetic, evolutionary discipline, Paleobiology 6: 96–118.

    Google Scholar 

  • Grassle, J. F., and Grassle, J. P., 1974, Opportunistic life histories and genetic systems in marine benthic polychaetes, J. Mar. Res. 32: 253–284.

    Google Scholar 

  • Grigg, R. W., and Maragos, J. E., 1974, Recolonization of hermatypic corals on submerged lava flows in Hawaii, Ecology 55: 387–395.

    Google Scholar 

  • Guinasso, N. L., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res. 80: 3032–3043.

    Google Scholar 

  • Hanes, T. L., 1971. Succession after fire in the Chaparral of southern California, Ecol. Monogr. 41: 27–52.

    Google Scholar 

  • Harger, J. R. E., 1972, Competitive coexistence among intertidal invertebrates, Am. Sci. 60: 600–607.

    Google Scholar 

  • Harlow, W. H., and Harrar, E. S., 1969, Textbook of Dendrology, McGraw–Hill, New York.

    Google Scholar 

  • Harris, F. W., and Martin, W. D., 1979, Benthic community development in limestone beds of the Waynesville (Upper Dillsboro) Formation (Cincinattian series, Upper Ordovician) of southeastern Indiana, J. Sedim. Petrol. 49: 1295–1306.

    CAS  Google Scholar 

  • Henry, J. D., and Swan, J. M. A., 1974, Reconstructing forest history from live and dead plant material—An approach to the study of forest succession in southwestern New Hampshire, Ecology 55: 772–783.

    Google Scholar 

  • Hewatt, W. G., 1935, Ecological succession in the Mytilus californianus habitat as observed in Monterey Bay, California, Ecology 16: 244–251.

    Google Scholar 

  • Holme, N. A., 1950, Population dispersion in Tellina tenuis Da Costa, J. Mar. Biol. Assoc. U.K. 29: 267–280.

    Google Scholar 

  • Horn, H. S., 1974, The ecology of secondary succession, Annu. Rev. Ecol. Syst. 5: 25–37.

    Google Scholar 

  • Horn, H. S., 1975a, Forest succession, Sci. Am. 232 (5): 90–98.

    Google Scholar 

  • Horn, H. S., 1975b, Markovian properties of forest succession, in: Ecology and Evolution of Communities (M. L. Cody and J. M. Diamond, eds.), pp. 196–211

    Google Scholar 

  • Jackson, J. B. C., 1972, The ecology of molluscs of Thallasia communities, Jamaica, West Indies, II. Molluscan population variability along an environmental stress gradient, Mar. Biol. 14: 304–337.

    Google Scholar 

  • Johnson, M. E., 1977, Succession and replacement in the development of Silurian brachiopod populations, Lethaia 10: 83–93.

    Google Scholar 

  • Johnson, R. G., 1960, Models and methods of analysis of the mode of formation of fossil assemblages, Geol. Soc. Am. Bull. 71: 1075–1086.

    Google Scholar 

  • Johnson, R. G., 1972, Conceptual models of benthic marine communities, in: Models in Paleobiology ( T. J. M. Schopf, ed.), pp. 148–159, Freeman, Cooper, San Francisco.

    Google Scholar 

  • Jones, N. S., 1950, Marine bottom communities, Biol. Rev. 25: 283–313.

    Google Scholar 

  • Kitching, J. A., Ebling, F. J., Gamble, J. C., Hoare, R., McLeod, A. A. Q. R., and Norton, T. A., 1976, The ecology of Lough Ine. XIX. Seasonal changes in the western trough, J. Anim. Ecol. 45: 731–753.

    Google Scholar 

  • Knight, D. H., 1975, An analysis of late secondary succession in a species-rich tropical forest, in: Tropical Ecological Systems ( F. B. Colley, ed.), pp. 53–59, Springer-Verlag, Berlin.

    Google Scholar 

  • Knight, M., and Parke, M. W., 1950, A biological study of Fucus vesiculosus L. and F. serratus L., J. Mar. Biol. Assoc. U.K. 29: 439–514.

    Google Scholar 

  • Knutson, D. W., Buddemeir, R. W., and Smith, S. V., 1972, Coral chronometers: Seasonal growth bands in reef corals, Science 177: 270–272.

    CAS  PubMed  Google Scholar 

  • Kukal, Z., 1970, Geology of Recent Sediments, Academia, Prague.

    Google Scholar 

  • Lawrence, D. R., 1968, Taphonomy and information losses in fossil communities, Geol. Soc. Am. Bull. 79: 1314–1330.

    Google Scholar 

  • Levin, L. A., 1981, Dispersion, feeding behavior and competition in two spionid polychaetes, J. Mar. Res. 34: 99–117.

    Google Scholar 

  • Levinton, J. S., 1970, The paleoecological significance of opportunistic species, Lethaia 3: 6978.

    Google Scholar 

  • Levinton, J., 1971, Ecological relationships in shallow water deposit-feeding communities, Ph.D. dissertation, Yale University.

    Google Scholar 

  • Levinton, J. S., 1977, The ecology of deposit-feeding communities: Quisset Harbor, Massachusetts, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 191–228, University of South Carolina Press, Columbia.

    Google Scholar 

  • Levinton, J. S., 1982, Marine Ecology, Englewood Cliffs, N.J.

    Google Scholar 

  • Lewis, J. R., 1964, The Ecology of Rocky Shores, The English Universities Press, London.

    Google Scholar 

  • McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.

    Google Scholar 

  • McCall, P. L., 1978, Spatial–temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191–219, Academic Press, New York.

    Google Scholar 

  • McCrone, A., Ellis, B. F., and Charmatz, R., 1961, Preliminary observations on Long Island Sound sediments, Trans. N.Y. Acad. Sci. 24: 119–129.

    Google Scholar 

  • McNaughton, S. J., and Wolf, L. L., 1973, General Ecology, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Makurath, J. H., 1977, Marine faunal assemblages in the Silurian–Devonian Keyser Limestone of the central Appalachians, Lethaia 10: 235–256.

    Google Scholar 

  • Margalef, R., 1968, Perspectives in Ecological Theory, University of Chicago, Press, Chicago.

    Google Scholar 

  • Matisoff, G., 1982, Mathematical models of bioturbation, in: Animal–Sediment Relations ( P. L. McCall and M. J. S. Tevesz, eds.), pp. 289–330, Plenum Press, New York.

    Google Scholar 

  • Menge, B. A., 1976, Organization of the New England rocky intertidal community: Role of predation, competition, and environmental heterogeneity, Ecol. Monogr. 46: 255–293.

    Google Scholar 

  • Millici, R. C., and Walker, K. R., 1973, Depositional environments—mudbanks and “lakes”—in the Moccasin Formation, Raccoon Valley, Knox County, Tennessee, Tenn. Div. Geol. Bull. 70: 152–158.

    Google Scholar 

  • Mills, E. L., 1969, The community concept in marine zoology, with comments on continua and instability in some marine communities: A review, J. Fish. Res. Board Can. 26: 1415 1428.

    Google Scholar 

  • Moore, H. B., 193la, Muds of the Clyde Sea area. III. Chemical and physical conditions; rate and nature of sedimentation: and fauna, J. Mar. Biol. Assoc. U.K. 17: 359–366.

    Google Scholar 

  • Moore, H. B., 1931b, The specific identifications of fecal pellets, J. Mar. Biol. Assoc. U.K. 17: 359–366.

    Google Scholar 

  • Moore, H. B., 1958, Marine Ecology, Wiley, New York.

    Google Scholar 

  • Moore, J. R., 1963, Bottom sediment studies, Buzzards Bay, Mass., J. Sediment. Petrol. 33: 511–558.

    Google Scholar 

  • Myers, A. C., 1979, Summer and winter burrows of a mantis shrimp, Squilla empusa. in Narragansett Bay, Rhode Island (U.S.A.), Estwarine Coastal Mar. Sci. 8: 87–98.

    Google Scholar 

  • Nichols, F. H., 1977, Dynamics and production of Pectinaria koreni in Kill Bay, West Germany, in: Biology of Benthic Organisms ( B. F. Keegan, P. O’Ceidigh, and P. J. S. Boaden, eds.), pp. 453–464, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Northcraft, R. D., 1948, Marine algal colonization on the Monterey Peninsula, California, Am. J. Bot. 35: 396–404.

    Google Scholar 

  • Odum, E. P., 1971, Fundamentals of Ecology, Saunders, Philadelphia.

    Google Scholar 

  • Oosting, H. J., 1942, An ecological analysis of plant communities of Piedmont, North Carolina, Am. Midl. Nat. 28: 1–126.

    Google Scholar 

  • Orth, R. J., 1977, The importance of sediment stability in seagrass communities, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 281–311, University of South Carolina Press, Columbia.

    Google Scholar 

  • Paine, R. T., 1966, Food web complexity and species diversity, Am. Nat. 100: 65–75.

    Google Scholar 

  • Parke, M. W., 1948, Studies on British Laminariaceae. I. Growth in Laminaria saccharine (L.) Lamour, J. Mar. Biol. Assoc. U.K. 27: 651–709.

    Google Scholar 

  • Pearson, T. H., and Rosenberg, R., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanogr. Mar. Biol. Annu. Rev. 16: 229–311.

    Google Scholar 

  • Petersen C. G. J., 1918, The sea-bottom and its production of fish food, Rep. Dan. Biol. Stn. Board Agric. Copenhagen 25: 1–82.

    Google Scholar 

  • Peterson, C. H., 1976, Relative abundances of living and dead molluscs in two California lagoons, Lethaia 9: 137–148.

    Google Scholar 

  • Peterson, C. H., 1977, Competitive organization of the soft-bottom macrobenthic communities of southern California lagoons, Mar. Biol. 43: 343–359.

    Google Scholar 

  • Peterson, C. H., and Andre, S. V., 1980, An experimental analysis of interspecific competition among marine filter feeders in a soft-sediment environment, Ecology 61: 129–139.

    Google Scholar 

  • Rees, T. K., 1940, Algal colonization at Mumbles Head, J. Ecol. 28: 403–437.

    Google Scholar 

  • Rhoads, D. C., 1970, Mass properties, stability, and ecology of marine muds related to burrowing activity, in: Trace Fossils ( R. W. Frey, ed.), pp. 147–160, Springer-Verlag, Berlin.

    Google Scholar 

  • Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.

    CAS  Google Scholar 

  • Rhoads, D. C., and Boyer, L. F., 1982, The effects of marine benthos on physical properties of sediments: A successional perspective, in: Animal—Sediment Relations ( P. L. McCall and M. J. S. Tevesz, eds.), pp. 3–52, Plenum Press, New York.

    Google Scholar 

  • Rhoads, D. C., and Young, D. K., 1970, The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.

    Google Scholar 

  • Rhoads, D. C., Speden, I. G., and Waage, K. M., 1972, Trophic group analysis of Upper Cretaceous (Maestrichtian) bivalve assemblages from South Dakota, Am. Assoc. Petrol. Geol. Bull. 56: 1100–1113.

    Google Scholar 

  • Rhoads, D. C., McCall, P. L., and Yingst, J. H., 1978, Disturbance and production on the estuarine seafloor, Am. Sci. 66: 577–586.

    Google Scholar 

  • Richards, R. P., 1972, Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio), J. Paleontol. 46: 386–405.

    Google Scholar 

  • Ricketts, E. F., Calvin, J., and Hedgpeth, J. W., 1968, Between Pacific Tides, Stanford University Press, Stanford, Calif.

    Google Scholar 

  • Riese, K., 1977, Predator exclusion experiments in an intertidal mud flat, Helgol. Wiss. Meeresunters. 30: 263–271.

    Google Scholar 

  • Robbins, J. A., McCall, P. L., Fisher, J. B., and Krezoski, J. R., 1979, Effect of deposit feeders on migration of 137Cs in lake sediments, Earth Planet. Sci. Lett. 42: 277–287.

    CAS  Google Scholar 

  • Rollins, H. B., Carothers, M., and Donahue, J., 1979, Transgression, regression and fossil community succession, Lethaia 12: 89–104.

    Google Scholar 

  • Rosenberg, R., 1976, Benthic faunal dynamics during succession following pollution abatement in a Swedish estuary, Oikos 27: 414–427.

    Google Scholar 

  • Santos, S. L., and Bloom, S. A., 1980, Stability in an annually defaunated estuarine soft-bottom community, Oecologia (Berlin) 46: 290–294.

    Google Scholar 

  • Santos, S. L., and Simon, J. L., 1980, Marine soft-bottom community establishment following annual defaunation: Larval or adult recruitment, Mar. Ecol. Prog. Ser. 2: 235–241.

    Google Scholar 

  • Schäfer, W., 1972, Ecology and Paleoecology of Marine Environments, University of Chicago Press, Chicago.

    Google Scholar 

  • Schindel, D. E., 1980, Microstratigraphic sampling and the limits of paleontologic resolution, Paleobiology 6: 408–426.

    Google Scholar 

  • Scott, R. W., 1972, Approaches to trophic analysis of paleocommunities, Lethaia 11: 1–14.

    Google Scholar 

  • Smith, R. L., 1974, Ecology and Field Biology, Harper and Row, New York.

    Google Scholar 

  • Spurr, S., 1952, The origin of the concept of forest succession, Ecology 33: 426–427.

    Google Scholar 

  • Surlyk, F., 1972, Morphological adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous), K. Dan. Vidensk. Selsk. Biol. Skr. 19: 1–57.

    Google Scholar 

  • Sussman, A. S., 1968, Longevity and survivability of fungi, in: The Fungi: An Advanced Treatise ( G. C. Ainsworth and A. S. Sussman, eds.), Academic Press, New York.

    Google Scholar 

  • Tansley, A. G., 1935, The use and abuse of vegetational concepts and terms, Ecology 16: 284–307.

    Google Scholar 

  • Tevesz, M. J. S., and McCall, P. L., 1979, Evolution of substratum preference in bivalves (Mollusca), J. Paleontol. 53: 112–120.

    Google Scholar 

  • Thayer, C., 1975, Morphologic adaptations of benthic invertebrates to soft substrata, J. Mar. Res. 33: 177–189.

    Google Scholar 

  • Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science 203: 458–461.

    CAS  PubMed  Google Scholar 

  • Thorson, G., 1957, Bottom communities, in: Treatise on Marine Ecology and Paleoecology (J. W. Hedgpeth, ed.), Geol. Soc. Am. Mem. 67: 461–534.

    Google Scholar 

  • Thorson, G., 1966, Some factors influencing the recruitment and establishment of marine benthic communities, Neth. J. Sea Res. 3: 267–293.

    Google Scholar 

  • Toomey, D. F., and Cys, J. M., 1979, Community succession in small bioherms of algae and sponges in the Lower Permian of New Mexico, Lethaia 12: 65–74.

    Google Scholar 

  • Turekian, K. K., Cochran, J. K., Benninger, L. K., and Aller, R. C., 1980, The sources and sinks of nuclides in Long Island Sound, Adv. Geophys. 22: 129–164.

    CAS  Google Scholar 

  • Vermeij, G. J., 1977, The Mesozoic marine revolution: evidence from snails, predators, and grazers, Paleobiology 3: 245–258.

    Google Scholar 

  • Virnstein, R. W., 1977, The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay, Ecology 58: 1199–1217.

    Google Scholar 

  • Virnstein, R. W., 1978, Predator caging experiments in soft sediments: Caution advised, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 261–273, Academic Press, New York.

    Google Scholar 

  • Walker, K. R., 1972, Trophic analysis: A method for studying the function of ancient communities, J. Paleontol. 46: 82–93.

    Google Scholar 

  • Walker, K. R., Laporte, L. F., 1970, Congruent fossil communities from Ordivician and Devonian carbonates of New York, J. Paleontol. 44: 928–944.

    Google Scholar 

  • Walker, K. R., and Alberstadt, L. P., 1975, Ecological succession as an aspect of structure in fossil communities, Paleobiology 1: 238–257.

    Google Scholar 

  • Walker, K. R., and Bambach, R. K., 1971, The significance of fossil assemblages from fine-grained sediments: Time-averaged communities, Geol. Soc. Am. Abstr. Progr. 3: 783–784.

    Google Scholar 

  • Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a later stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.

    Google Scholar 

  • Warme, J. E., 1969, Live and dead molluscs in a coastal lagoon, J. Paleontol. 43: 141–150.

    Google Scholar 

  • Williams, W. T., Lance, G. N., Webb, J., Tracey, J. G., and Dale, M. B., 1969, Studies in the numerical analysis of complex rain-forest communities. III. Analysis of successional data, J. Ecol. 57: 515–535.

    Google Scholar 

  • Wilson, D. P., 1952, The influence of the nature of the substratum on the metamorphosis of the larvae of marine animals, especially the larvae of Ophelia bicornis, Savigny. Ann. Inst. Oceanogr. Monaco 27: 49–156.

    Google Scholar 

  • Wilson, W. H., Jr., 1981, Sediment-mediated interactions in a densely populated infaunal assemblage: The effects of the polychaete Abarenicola pacifica, J. Mar. Res. 34: 735–748.

    Google Scholar 

  • Wolff, W. J., Sandee, A. J. J., and deWolf, L., 1977, The development of a benthic ecosystem, Hydrobiologia 52: 107–115.

    Google Scholar 

  • Woodin, S. A., 1974, Polychaete abundance patterns in a marine soft sediment: The importance of biological interaction, Ecol. Monogr. 44: 171–187.

    Google Scholar 

  • Woodin, S. A., 1976, Adult—larval interactions in dense infaunal assemblages: Patterns of abundance, J. Mar. Res. 34: 25–41.

    Google Scholar 

  • Woodin, S. A., 1978, Refuges, disturbance and community structure: A marine soft-bottom example, Ecology 59: 274–284.

    Google Scholar 

  • Young, D. K., and Young, M. W., 1978, Regulation of species densities of seagrass-associated macrobenthos: Evidence from field experiments in the Indian River estuary, Florida, J. Mar. Res. 36: 569–593.

    Google Scholar 

  • Young, D. K., Buzas, M. A., and Young, M. W., 1976, Species densities of macrobenthos associated with seagrass: A field experimental study of predation, J. Mar. Res. 34: 577–592.

    Google Scholar 

  • Ziegler, A. M., Cocks, L. R. M., and Bambach, R. K., 1968, The composition and structure of Lower Silurian marine communities, Lethaia 1: 1–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCall, P.L., Tevesz, M.J.S. (1983). Soft-Bottom Succession and the Fossil Record. In: Tevesz, M.J.S., McCall, P.L. (eds) Biotic Interactions in Recent and Fossil Benthic Communities. Topics in Geobiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0740-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0740-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0742-7

  • Online ISBN: 978-1-4757-0740-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics