Skip to main content

Hormonal Control of Glycogen Metabolism

  • Chapter
Book cover Hormones and Energy Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 111))

Abstract

It is now recognized that both glycogen synthesis and degradation are controlled by covalent modification as well as by soluble cellular effectors. In general, it appears that only the hormonal controls are exerted through covalent phosphorylation and dephosphorylation. By this mechanism one cell type, the endocrine cell, communicates with another cell type, the target cell. The soluble cellular effectors appear to be influenced by nonhormonal as well as hormonal stimuli.

This work was supported by U.S. Public Health Service Grants No. 2 R01 AM15334-08 and AM17043-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avruch, J., Leone, G.R., and Martin, D.B. (1976). Effects of epinephrine and insulin on phosphopeptide metabolism in adipocytes. J. Biol. Chem. 251: 1511–1515.

    PubMed  CAS  Google Scholar 

  • Benjamin, W.B. and Singer, I. (1975). Actions of insulin, epinephrine, and dibutyryl cyclic adenosine 5’-monophosphate on fat cell protein phosphorylations, cyclic adenosine 5’-monophosphate dependent and independent mechanisms. Biochemistry 14: 3301–3309.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J.S. (1970). Inability of insulin to activate liver glycogen transferase D phosphatase in the diabetic pancreatectomized dog. Biochim. Biophys. Acta 208: 208–218.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J.S. and Larner, J. (1967). Rapid activation-inactivation of liver uridine diphosphate glucose-glycogen transferase and phosphorylase by insulin and glucagon in vivo. J. Biol. Chem. 242: 1355–1356.

    Google Scholar 

  • Butcher, R.W., Sneyd, J.G.T., Park, C.R., and Sutherland, E.W. Jr. (1966). Effect of insulin on adenosine 3’,5’-monophosphate in the rat epididymal fat pad. J. Biol. Chem. 241: 1651–1653.

    PubMed  CAS  Google Scholar 

  • Clausen, T., Elbrink, J., and Dahl-Hansen, A.G. (1975). The re- lationship between the transport of glucose and cations across cell membranes in isolated tissues. Biochim. Biophys. Acta 375: 292–308.

    Article  PubMed  CAS  Google Scholar 

  • Craig, J.W. and Larner, J. (1964). Influence of epinephrine and insulin on uridine di phosphate glucose-a-glucan transferase and phosphorylase in muscle. Nature 202: 971–973.

    Article  PubMed  CAS  Google Scholar 

  • Craig, J.W., Rall, T.W., and Larner, J. (1969). The influence of insulin and epinephrine on adenosine 3’,5’-phosphate and glycogen transferase in muscle. Biochim. Biophys. Acta 177: 213219.

    Google Scholar 

  • Fain, J.N. (1974). Mode of action of insulin. pp. 1–23. In: H.V. Rickenberg (Ed.) Biochemistry of Hormones, Vol. 8.

    Google Scholar 

  • Fain, J.N. and Butcher, F.R. (1976). Cyclic guanosine 3’,5’-mono- phosphate and the regulation of lipolysis in rat fat cells. J. Cyclic Nuci. Res. 2: 71–78.

    CAS  Google Scholar 

  • Friedman, D.L. and Larner, J. (1963). Studies on UDPG-glucan transferase. III. Interconversion of two forms of UDPG-glucan transferase by a phosphorylation-dephosphorylation reaction sequence. Biochemistry 2: 669–675.

    Article  PubMed  CAS  Google Scholar 

  • Gold, A.H. (1970). The effect of diabetes and insulin on liver glycogen synthetase activation. J. Biol. Chem. 245: 903–905.

    PubMed  CAS  Google Scholar 

  • Goldberg, N.D., Dietz, S.B., and O’Toole, A.G. (1969). Cyclic quanosine 3’,5’-monophosphate in mammalian tissues and urine. J. Biol. Chem. 244: 4458–4466.

    PubMed  CAS  Google Scholar 

  • Goldberg, N.D., Villar-Palasi, C., Sasko, H., and Larner, J. (1967). Effects of insulin treatment on muscle 3’,5’-cyclic adenylate levels in vivo and in vitro. Biochim. Biophys. Acta 148: 665672.

    Google Scholar 

  • Illiano, T., Tell, G.P.E., Siegel, M.I., and Cuatrecasas, P. (1973). Guanosine 3’,5’-cyclic monophosphate and the action of insulin and acetylcholine. Proc. Nat’l. Acad. Sci. U.S.A. 70: 2443 2447.

    Google Scholar 

  • Jarett, L., Steiner, A.L., Smith, R.M., and Kipnis, D.M. (1972). The involvement of cyclic AMP in the hormonal regulation of protein synthesis in rat adipocytes. Endocrinology 90: 1277 1284.

    Google Scholar 

  • Kissebah, A.H., Hope-Gill, H., Vydelingum, N., Tulloch, B.R., Clark, P.V., and Fraser, T.R. (1975). Mode of insulin action. Lancet 1: 144–147.

    Article  PubMed  CAS  Google Scholar 

  • Kono, T. and Barham, F.W. (1973). Effects of insulin on the levels of adenosine 3’,5’-monophosphate and lipolysis in isolated rat epididymal fat cells. J. Biol. Chem. 248: 7417–7426.

    PubMed  CAS  Google Scholar 

  • Krebs, E.G. (1972). Protein kinases. pp. 99–133. In: B.L. HorecKer and E.R. Stadtman (Eds.) Current Topics in Cellular Regulation, Vol. 5. Academic Press, New York.

    Google Scholar 

  • Kumon, A., Nishizuka, K., Yamamura, H., and Nishizuka, Y. (1972). Multiplicity of adenosine 3’,5’-monophosphate-dependent protein kinases from rat liver and mode of action of nucleoside 3’,5’-monophosphate. J. BioZ. Chem. 247: 3726–3735.

    CAS  Google Scholar 

  • Larner, J. (1972). Insulin and glycogen synthase. Diabetes 21: Suppl. 2: 428–438.

    Google Scholar 

  • Larner, J., Huang, L.C., Brooker, G., Murad, F., and Miller, T.B. (1974). Inhibitor of protein kinase formed in insulin treated muscle. FEBS Lett. 33: 261.

    Google Scholar 

  • Larner, J., Huang, L.C., Hazen, R., Brooker, G., and Murad, F. (1975). Mechanism of insulin action on glycogenesis. Diabetes 24: 394.

    Google Scholar 

  • Larner, J., Takeda, Y., Brewer, H.B., Huang, L.C., Hazen, R., Brooker, G., Murad, F., and Roach, P. (1976). Studies on glycogen synthase and its control by hormones. In: S. Shaltiel (Ed.) Metabolic Interconversion of Enzymes. Springer Verlag.

    Google Scholar 

  • Larner, J., Villar-Palasi, C., and Brown, N.E. (1969). Uridine diphosphate glucose: a-1,4 glucan a-4-glucosyl transferase in heart. Two forms of the enzyme; interconversion reactions and properties. Biochim. Biophys. Acta 178: 470–479.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D.C. and Segal, H.L. (1973). Homogeneous glycogen synthe- tase b from rat liver. J. Biol. Chem. 248: 7007–7011.

    PubMed  CAS  Google Scholar 

  • McDonald, J.M., Bruns, D.E., and Jarett, L. (1976a). Ability of insulin to increase calcium binding by adipocyte plasma membranes. Proc. Nat’l. Acad. Sci. U.S.A. 73: 1542–1546.

    Article  CAS  Google Scholar 

  • McDonald, J.M., Bruns, D.E., and Jarett, L. (1976b). The ability of insulin to alter stable calcium pools of isolated adipocyte subcellular fractions. Biochem. Biophys. Res. Commun. 71: 114–121.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T.B. Jr. and Larner, J. (1973). Mechanism of control of hepatic glycogenesis by insulin. J. Biol. Chem. 248: 34833488.

    Google Scholar 

  • Miller, T.B. Jr. and Larner, J. (1972). Anti-insulin actions of a bovine pituitary diabetogenic peptide on glycogen synthesis. Proc. Nat’l. Acad. Sci. U.S.A. 69: 2774–2777.

    Article  CAS  Google Scholar 

  • Murad, F., Rall, T., and Vaughan, M. (1969). Conditions for the formation, purification and assay of an inhibitor of adenosine 3’,5’-monophosphate. Biochim. Biophys. Acta 192: 430445.

    Google Scholar 

  • Nimmo, H.B. and Cohen, P. (1974). Glycogen synthetase kinase 2 (GSK2). The identification of a new protein kinase in skeletal muscle. FEES Lett. 47: 162–166.

    Article  CAS  Google Scholar 

  • Nimmo, H.G., Proud, C.G., and Cohen, P. (1976). The phosphorylation of rabbit skeletal muscle glycogen synthase by glycogen synthase kinase 2 and adenosine 3’,5’-monophosphate dependent protein kinase. Eur. J. Biochem. 68: 31–44.

    Article  PubMed  CAS  Google Scholar 

  • Nuttall, F.Q. and Larner, J. (1971). Studies on glycogen synthetase interconverting enzymes in in vitro perfused compared to non-perfused rat hearts. Biochim. Biophys. Acta 230: 560–570.

    Article  PubMed  CAS  Google Scholar 

  • Roach, P.J. and Larner, J. (1976). Rabbit skeletal muscle glyco- gen synthase. II. Enzyme phosphorylation state and effector concentrations as interacting control parameters. J. Biol. Chem. 251: 1920–1925.

    PubMed  CAS  Google Scholar 

  • Roach, P.J. and Larner, J. (1977). Covalent phosphorylation in the regulation of glycogen synthase activity. Mol. Cell. Biochem. 15: 179–200.

    CAS  Google Scholar 

  • Roach, P.J., Takeda, Y., and Larner, J. (1976). Rabbit muscle glycogen synthase. I. Relationship between phosphorylation state and kinetic properties. J. BioZ. Chem. 251: 1913–1919.

    CAS  Google Scholar 

  • Rosen, 0.M., Erlichman, J., and Rubin, C.S. (1975). Molecular structure and characterization of bovine heart protein kinase. pp. 253–263. In: G.I. Drummond, P. Greengard, and G.A. Robison (Eds.) Advances in Cyclic Nucleotides Research, Vol. 5. Raven Press, New York.

    Google Scholar 

  • Schlender, K.K. and Reimann, E.M. (1975). Isolation of a glycogen synthase I kinase that is independent of adenosine 31,5’monophosphate. Proc. Nat’l. Acad. Sci. U.S.A. 72: 2197–2201.

    Article  CAS  Google Scholar 

  • Shen, L.C., Villar-Palasi, C., and Larner, J. (1970). Hormonal alteration of protein kinase sensitivity to cyclic AMP. Phys. Chem. and Phys. 2: 536–544.

    CAS  Google Scholar 

  • Smith, C.H., Brown, N.E., and Larner, J. (1971). Molecular characteristics of the totally dependent and independent forms of glycogen synthase of rabbit skeletal muscle II. Biochim. Biophys. Acta 242: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Soderling, T.R. (1975). Regulation of glycogen synthetase. J. Biol. Chem. 250: 5407–5412.

    PubMed  CAS  Google Scholar 

  • Soderling, T.R., Corbin, J.D., and Park, C.R. (1973). Regulation of adenosine 3’,5’-monophosphate-dependent protein kinase II. Hormonal regulation of the adipose tissue enzyme. J. Biol. Chem. 248: 1822–1829.

    PubMed  CAS  Google Scholar 

  • Soderling, T.R., Hickenbottom, J.P., Reimann, E.M., Hunkeler, F.L., Walsh, D.H., and Krebs, E.G. (1970). Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine 3’,5’-monophosphate-dependent protein kinases. J. Biol. Chem. 245: 6317–6328.

    PubMed  CAS  Google Scholar 

  • Takeda, Y. and Larner, J. (1975). Structural studies on rabbit muscle glycogen synthase. II. Limited proteolysis. J. Biol. Chem. 250: 3951–3956.

    Google Scholar 

  • Villar-Palasi, C., Goldberg, N.D., Bishop, J.S., Nuttall, F.W., Schlender, K.K., and Larner, J. (1970). Hormonal control of glycogen synthetase interconversions. pp. 161–180. In: J.J. Blum (Ed.) Soc. Cen’Z. Phys. Symposium on Biogenic Amines. Prentice Hall, New York.

    Google Scholar 

  • Villar-Palasi, C. and Wenger, J.I. (1967). In vivo effect of insulin on muscle glycogen synthetase. Identification of the action pathway. Fed. Proc. 26: 563.

    Google Scholar 

  • Walaas, O., Walaas, E., and Gronnerod, 0. (1973). Hormonal regulation of cyclic-AMP-dependent protein kinase of rat diaphragm by epinephrine and insulin. Eur. J. Biochem. 40: 465–477.

    Article  PubMed  CAS  Google Scholar 

  • Walaas, O., Walaas, E., and GrOnnerOd, 0. (1972). Effect of insulin and epinephrine in cyclic AMP-dependent protein kinase in rat diaphragm. Israel J. Med . Sci. 8: 353–357.

    PubMed  CAS  Google Scholar 

  • Walsh, D.A., Ashby, C.D., Gonzales, C., Calkins, D., Fischer, E.H., and Krebs, E.G. (1971). Purification and characterization of a protein inhibitor of adenosine 3’,5’-monophosphate-dependent protein kinase. J. Biol. Chem. 246: 1977–1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larner, J., Roach, P.J., Huang, L.C., Brooker, G., Murad, F., Hazen, R. (1979). Hormonal Control of Glycogen Metabolism. In: Klachko, D.M., Anderson, R.R., Heimberg, M. (eds) Hormones and Energy Metabolism. Advances in Experimental Medicine and Biology, vol 111. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0734-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0734-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0736-6

  • Online ISBN: 978-1-4757-0734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics