Skip to main content
Book cover

Conditioning pp 249–264Cite as

Processes Underlying One Form of Synaptic Plasticity: Facilitation

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 26))

Summary

Facilitation is one of the most prevalent forms of synaptic plasticity, and is often invoked as a quality which is important in the nervous system’s ability to generate adaptive behavior. The squid giant synapse provides an excellent opportunity to explore the biophysical mechanism of synaptic facilitation. Previous studies showed that facilitation is not due to changes in presynaptic action potentials or after-potentials. Evidence summarized here indicates that facilitation is also not a consequence of presynaptic calcium channel properties, nor is it a reflection of growing increments in presynaptic calcium concentration with repeated activity. Moreover, arsenazo III absorbance microspectrophotometry has revealed a residual calcium following presynaptic activity, and injection of calcium presynaptically facilitates spike-evoked transmitter release. A nonlinear relation between calcium and transmitter release is demonstrated, and this plus a mathematical model of diffusive calcium movements within the presynaptic terminal account for both the time course of transmitter release and the magnitude and decay of facilitation following an action potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R. H., Chandler, W. K., and Hodgkin, A. L., 1970, Voltage clamp experiments in striated muscle fibres,,L Physiol. Lond., 208: 607.

    CAS  Google Scholar 

  • Ahmed, Z., and Connor, J. A., 1979, Measurement of calcium influx under voltage clamp in molluscan neurones using the metallo-chrome dye arsenazo III, J. Physiol. Lond., 286: 61.

    PubMed  CAS  Google Scholar 

  • Akaike, N., Lee, K. S., and Brown, A. M., 1978, The calcium current of Helix neuron, 1, gen. Physiol., 71: 509.

    Article  CAS  Google Scholar 

  • Alnaes, A., and Rahamimoff, R., 1975, On the role of mitochondria in transmitter release from motor nerve terminals, J. Physiol. Loud., 248: 285.

    CAS  Google Scholar 

  • Baker, P. F., and Schlaepfer, W. W., 1978, Uptake and binding of calcium by axoplasm isolated from giant axons of Loligo and Myxicola, 1, Physiol. Lond., 276: 103.

    CAS  Google Scholar 

  • Balnave, R. J., and Gage, P. W., 1974, On facilitation of transmitter release at the toad neuromuscular junction, L. Physiol.ond., 239: 657.

    CAS  Google Scholar 

  • Blaustein, M. P., 1976, The ins and outs of calcium transport in squid axons: internal and external ion activation of calcium efflux, Fedn. Proc., 35: 2574.

    CAS  Google Scholar 

  • Brinley, F. J., Jr., Tiffert, T., and Scarpa, A., 1978, Mitochondria and other calcium buffers of squid axon studied in situ,.,L2 gen. Physiol., 72: 101.

    Article  CAS  Google Scholar 

  • Brinley, F. J., Jr., Tiffert, T., Scarpa, A., and Mullins, L. J., 1977, Intracellular calcium buffering capacity in isolated squid axons, J. gen. Physiol., 70: 355.

    Article  PubMed  CAS  Google Scholar 

  • Charlton, M. P., and Bittner, G. D., 1978,, Facilitation of transmitter release at squid synapses, L . gen. Physiol., 72: 471.

    Google Scholar 

  • Charlton, M. P., and Bittner, G. D., 1978h, Presynaptic potentials and facilitation of transmitter release in the squid giant synapse, I, gen. Physiol., 72: 487.

    Article  CAS  Google Scholar 

  • Charlton, M. P., Smith, S. J., and Zucker, R. S., 1981, Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse, L. Physiol. in press.

    Google Scholar 

  • Connor, J. A., 1979, Calcium current in molluscan neurones: measurement under conditions which maximize its visibility, J. Physiol. Lond., 286: 41.

    PubMed  CAS  Google Scholar 

  • Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science. N.Y., 174: 788.

    Article  CAS  Google Scholar 

  • DiPolo, R., 1976, The influence of nucleotides on calcium fluxes, Fedn. Proc., 35: 2579.

    CAS  Google Scholar 

  • DiPolo, R., Requena, J., Brinley, F. J., Jr., Mullins, L. J., Scarpa, A., and Tiffert, T., 1976, Ionized calcium concentrations in squid axons, L,. gen. Physiol., 67: 433.

    Article  CAS  Google Scholar 

  • Dodge, F. A., Jr., and Rahamimoff, R., 1967, Co-operative action of calcium ions in transmitter release at the neuromuscular junction, Physiol. Lond., 193: 419.

    CAS  Google Scholar 

  • Eccles, J. C., 1973, “The Understanding of the Brain,” McGraw-Hill, New York.

    Google Scholar 

  • Eckert, R., Tillotson, D., and Ridgway, E. G., 1977, Voltage-dependent facilitation of Cat+ entry in voltage-clamped, aequo-rin-injected molluscan neurons, Proc. natn. Acad. Sci. U. S. p., 74: 1748.

    Google Scholar 

  • Erulkar, S. D., and Rahamimoff, R., 1978, The role of calcium ions in tetanic and post-tetanic increase of miniature end-plate potential frequency, L,. Physiol. Lond., 278: 501.

    CAS  Google Scholar 

  • Feng, T. P., 1940, Studies on the neuromuscular junction. XVIII. The local potentials around N-M junctions induced by single and multiple volleys, Chin.,Zs Physiol., 15: 367.

    Google Scholar 

  • Freud, S., Project for a scientific psychology, in: “The Origins of Psycho-Analysis. Letters to Wilhelm Fliess, Drafts and Notes: 1887–1902,” M. Bonaparte, A. Freud, and E. Kris, eds., E. Mosbacher and J. Strachey, trs., Basic Books, New York.

    Google Scholar 

  • Gorman, A. L. F., and Thomas, M. V., 1980, Intracellular calcium accumulation during depolarization in a molluscan neurone,,, Physiol. Lond., 308: 259.

    CAS  Google Scholar 

  • Hebb, D. 0., 1958, “A Textbook of Psychology”, Saunders, Philadelphia.

    Google Scholar 

  • Katz, B., and Miledi, R., 1965, The effect of calcium on acetylcholine release from motor nerve terminals, Proc. Roy. Soc. Lond. B, 161: 496.

    Article  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1968, The role of calcium in neuromuscular facilitation, I, Physiol. Lond., 195: 481.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1970, Further study of the role of calcium in synaptic transmission, 1, Physiol. Lond., 207: 789.

    CAS  Google Scholar 

  • Klein, M., Shapiro, E., and Kandel, E. R., 1980, Synaptic plasticity and the modulation of the Ca2+ current, L. exp. Biol., 89: 117.

    CAS  Google Scholar 

  • Kusano, K., and Landau, E. M., 1975, Depression and recovery of transmission at the squid giant synapse, J. Physiol. Lond., 245: 13.

    PubMed  CAS  Google Scholar 

  • Lester, H. A., 1970, Transmitter release by presynaptic impulses in the squid stellate ganglion, Nature. Lond., 227: 493.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., Steinberg, I. Z., and Walton, K., 1981k, Presynaptic calcium currents in squid giant synapse, Biophys. J., 33: 289.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., Steinberg, I. Z., and Walton, K., 1981k, Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse, Biophys.,L., 33: 323.

    CAS  Google Scholar 

  • Lux, H. D., and Heyer, C. B., 1977, An aequorin study of a facilitating calcium current in bursting pacemaker neurons of Helix, Neuroscience, 2: 585.

    Article  PubMed  CAS  Google Scholar 

  • Mark, R. F., 1974, “Memory and Nerve Cell Connections,” Oxford Univ., Oxford.

    Google Scholar 

  • Miledi, R., 1973, Transmitter release induced by injection of calcium ions into nerve terminals, Proc. Roy. Soc. Lond. ß, 183: 421.

    Article  CAS  Google Scholar 

  • Miledi, R., and Parker, I., 1981, Calcium transients recorded with arsenazo III in the presynaptic terminal of the squid giant synapse, Proc. Roy. Soc. Lond. a, 212: 197.

    Article  CAS  Google Scholar 

  • Miledi, R., and Thies, R., 1971, Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions, J. Physiol. Lond., 212: 245.

    PubMed  CAS  Google Scholar 

  • Rahamimoff, R., Meiri, H., Erulkar, S. D., and Barenholz, Y., 1978, Changes in transmitter release induced by ion-containing liposomes, Proc. natn. Acad. Sci U.S.A., 75: 5214.

    Article  CAS  Google Scholar 

  • Ramon y Cajal, S., 1894, La fine structure des centres nerveux, Proc. Roy. Soc. Lond. R, 55: 444.

    Google Scholar 

  • Rosenzweig, M. R., Bennett, E. L., and Diamond, M. C., 1972, Chemical and anatomical plasticity of brain: replications and exten-sions, in: “Macromolecules and Behavior”, 2nd edn., J. Gaito, ed., Appleton-Century-Crofts, New York.

    Google Scholar 

  • Smith, S. J., 1978, The mechanism of bursting pacemaker activity in neurons of the mollusc Tritonia diomedia, Ph.D. Dissertation, Univ. Washington, Seattle.

    Google Scholar 

  • Smith, S. J., and Zucker, R. S., 1980, Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones, j, Physiol. Lond., 300: 167.

    CAS  Google Scholar 

  • Stinnakre, J., 1977, Calcium movements across synaptic membranes and the release of transmitter, in: “Synapses”, G. A. Cottrell and P. N. R. Usherwood, eds., Academic, New York.

    Google Scholar 

  • Stinnakre, J., and Tauc, L., 1973, Calcium influx in active Aplysia neurones detected by injected aequorin, Nature. New Biol., 242: 113.

    Article  PubMed  CAS  Google Scholar 

  • Stockbridge, N., 1981, Possible roles of calmodulin and diffusion in the release of transmitter from the neuromuscular junction of the frog, Ph.D. Dissertation, Duke Univ., Durham.

    Google Scholar 

  • Thompson, R. F., Patterson, M. M., and Teyler, T. J., 1972, The neurophysiology of learning, Psychol. Rev., 23: 73.

    Article  CAS  Google Scholar 

  • Thompson, S. H., Membrane currents underlying bursting in molluscan pacemaker neurons, Ph.D. Dissertation, Univ. Washington, Seattle.

    Google Scholar 

  • Tillotson, D., and Horn, R., 1978, Inactivation without facilitation of calcium conductance in caesium-loaded neurones of Aplysia, Nature. Lond., 273: 312.

    Article  CAS  Google Scholar 

  • Young, J. Z., 1964, “A Model of the Brain”, Oxford Univ., Oxford. Zucker, R. S., 1973, Changes in the statistics of transmitter release during facilitation, J. Physiol. Loud., 229: 787.

    Google Scholar 

  • Zucker, R. S., 1974., Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses, 1 Physiol. Lond. 241:69.

    Google Scholar 

  • Zucker, R. S., 197412, Characteristics of crayfish neuromuscular facilitation and their calcium dependence, J. Physiol. Lond., 241: 91.

    Google Scholar 

  • Zucker, R. S., 1974. Q., Excitability changes in crayfish motor neurone terminals, J. Physiol. Lond., 241: 111.

    PubMed  CAS  Google Scholar 

  • Zucker, R. S., and Lara-Estrella, L. 0., 1979, Is synaptic facilitation caused by presynaptic spike broadening?, Nature. Lond., 278: 57.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zucker, R.S. (1982). Processes Underlying One Form of Synaptic Plasticity: Facilitation. In: Woody, C.D. (eds) Conditioning. Advances in Behavioral Biology, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0701-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0701-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0703-8

  • Online ISBN: 978-1-4757-0701-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics