Skip to main content

Plasma-Sprayed Beryllium

  • Chapter
Beryllium Science and Technology

Abstract

In this volume it should be unnecessary to extol the virtues of beryllium. The aim is to show that the plasma-spray method of consolidating beryllium powder, usually followed by a densifying heat treatment, can produce high-strength material competitive in properties and cost with that made by any other route. In addition, it will be claimed that for large, thin-walled bodies this process is unmatched in economy of source material and expendable tooling. In the subdense condition, plasma-sprayed beryllium will be seen to possess such physical-property divergence from other types that special applications may come to mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. R. Stetson and C. A. Hauck, Plasma Spraying Techniques for Toxic and Oxidizable Materials, J. Met, 13, 479–482 (. 1961 ).

    Google Scholar 

  2. C. R. Manning, Jr. and E. E. Mathauser, in: Society of Aerospace Materials and Process Engineers, National Symposium on Materials for Space Vehicle Use, 6th, Seattle, Washington (November 18–20, 1963), Vol. 3.

    Google Scholar 

  3. T. J. Roseberry, M. L. Headman, and F. L. Parkinson, Process Development and Evaluation of Plasma-Sprayed Beryllium, Western Gear Corporation Research Report No. 649–229, 31 pages (1964).

    Google Scholar 

  4. S. W. Porembka, H. D. Hanes, and P. J. Gripshover, Powder Metallurgy of Beryllium, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio, DMIC239,23 pages (1967).

    Google Scholar 

  5. T. A. Taylor and R. J. Baird, Process for Heat Treating Plasma Consolidated Beryllium, U.S. Patent No. 3, 791, 851 (1974).

    Google Scholar 

  6. R. J. Baird and T. A. Taylor, High Energy-Absorbtion Beryllium Made by Plasma Consolidation, U.S. Patent No, 3,853, 549 (1974).

    Google Scholar 

  7. N. P. Pinto and A. J. Martin, High Purity Beryllium Powder Components, Powder Metall. 17 (33), 70–84 (1974).

    CAS  Google Scholar 

  8. M. Headman, Western Gear Corporation Report, in AFSC Summary of the 7th Refractory Composites Working Group Meeting, Vol, 3, 764–781 (1963).

    Google Scholar 

  9. J. C. Bittence, Making Parts with a Plasma-Arc Torch, Mach. Des. 45 (9), 108–114 (1973).

    Google Scholar 

  10. D. R. Mash, Plasma Arc Spraying of Space-Age Materials, in: ASM Conference on Materials Science and Technology for Advanced Applications, 656–681 (1962).

    Google Scholar 

  11. L. W. Davis, Met. Progr. 83 (3), 105–108 (1963).

    CAS  Google Scholar 

  12. D. M. Karpinos, V. G. Zi1’berberg, V. Kh. Kadyrov, V. P. Moroz, and V. V. Gorskii, Poroshkovaia Metallurgiia August 1974, 41–44, Soy. Powd. Metall. Met. Ceram. 13 (8), 636–638 (1975).

    Article  Google Scholar 

  13. G. V. Samsonov, Zashch. Pokrytiio Met. 7, 6–15 (1973).

    CAS  Google Scholar 

  14. R. Wachtel, Society of Aerospace Materials and Process Engineers, National. Symposium on Ceramics and Composites, Coatings and Solid Bodies, Dayton, Ohio (November 1961)-

    Google Scholar 

  15. E. S. Hodge, P. J. Gripshover, and H. D. Hanes, Properties of Gas-Pressure-Consolidated Beryllium Powder, in: Beiylliurn Technology, Vol. 2 (L. McD. Schetky and H. A. Johnson, eds.), pp. 703–728, Gordon and Breach, New York (1966).

    Google Scholar 

  16. Wall Colmonoy Company, in: Alloy News 15,2 (1970).

    Google Scholar 

  17. S. R. Anthony and I. W. Dunmur, Plasma Spray Coating, Study and Avoidance of Anomalously Large Particles, AWRE Report No. 055 /72 (1972).

    Google Scholar 

  18. W. G. Northcutt, Jr. and V. M. Hovis, Jr., Thin Beryllium Structures by Powder Metallurgy-, Oak Ridge Y-12 Plant Report No. Y-2045 (1976).

    Google Scholar 

  19. W. Kasperowicz and W. Schoop, I)as Electro-147etallspritzverfahren von M. U. Schoop, Carl Marhold, Halle (1920).

    Google Scholar 

  20. D. Dearden and I. W. Dunmur, unpublished (1970).

    Google Scholar 

  21. D. Roberts and J. N. Lowe, unpublished (1969).

    Google Scholar 

  22. Union Carbide Corporation internal report.

    Google Scholar 

  23. Union Carbide Corporation internal report.

    Google Scholar 

  24. Union Carbide Corporation internal report.

    Google Scholar 

  25. C. C. Meredith, J. W. Moberly, and M. Barlow, Integrated. X-Ray Diffraction Measurements of Beryllium, J. Less Common Met. 18, 423–425 (1969).

    Article  CAS  Google Scholar 

  26. C. A. Carow, T. R. Moules, and P. D. Bayer, private communication.

    Google Scholar 

  27. J. A. Carrabine, D. H. Woodard, A. J. Stonehouse, and W. W. Beaver, The Effect of AIFeBe4 on Mechanical Properties of Fabricated Polycrystalline Beryllium, in: Berylliurn Technology, Vol. 1 (L. McD. Schetky and H. A. Johnson, eds.), p. 239, Gordon and Breach, New York (1966).

    Google Scholar 

  28. R. A. Foos, A. J. Stonehouse, and K. A. Walsh, Micro-Alloying Relationships in Beryllium, Brush Beryllium Company, Cleveland, Ohio, BBC-TR-456 (1970).

    Google Scholar 

  29. S. H. Gelles, Impurity Effects in Beryllium, Metals and Ceramics Information Center, Battelle Columbus Laboratories, Columbus, Ohio, MCIC 72–06 (1972).

    Google Scholar 

  30. ASTM Standard Method B328–73, Density and Interconnected Porosity of Sintered Powder Metal Structural Parts and Oil Impregnated Bearings.

    Google Scholar 

  31. G. Arthur, J. Inst. Met. 83, 329 (1958–1959).

    Google Scholar 

  32. J. M. Dalla Valle, Micromeritics, p. 264, Pitman, London (1948).

    Google Scholar 

  33. J. Kozeny, Sitzungsber. Akad. Wiss. Wien Math. Naturwiss, Kl. Abt. 2A 136, 271 (1927).

    Google Scholar 

  34. I. W. Dunmur, P. D. Bayer, and A. Moore, unpublished (1971).

    Google Scholar 

  35. J. W. Butcher, Activated Sintering of Beryllium, in: Conférence Internationale sur ln Métallurgie du Beryllium, Grenoble, 1965, pp. 555–564, Presses Universitaires de France, Paris (1965).

    Google Scholar 

  36. B. B. Lympany, J. G. Theodore, and W. W. Beaver, Micro-Alloying Beryllium for Improved Sintering Characteristics and Mechanical Properties, in: Conférence Internationale sur la Métallurgie du Beryllium, Grenoble, 1965, pp, 565–573, Presses Universitaires de France, Paris (1965).

    Google Scholar 

  37. Union Carbide Corporation internal report.

    Google Scholar 

  38. G. E. Darwin and J. H. Buddery, Beryllium, p. 172, Butterworths Scientific Publications, London (1960).

    Google Scholar 

  39. D. Beasley, Beryllium Data Manual, unpublished.

    Google Scholar 

  40. M. J. Wheeler, Brit. J, Appt. Phys. 16, 365 (1965).

    CAS  Google Scholar 

  41. P Gordon, A High Temperature Precision X-Ray Camera. Some Measurements of Thermal Coefficient of Expansion of Beryllium, J. Appt Phys. 20, 908–917 (1949).

    Article  CAS  Google Scholar 

  42. G. 1, Turner and R. A. Lane, The Effect of Powder Particle Size on the Mechanical Properties of Hot Pressed High Purity Beryllium, in: Fourth International Conference on Beryl. hum, London, 1977, paper 15, The Metals Society, London (1977).

    Google Scholar 

  43. R. E. Cooper, unpublished (1975).

    Google Scholar 

  44. D. Beasley and R. E. Cooper, to be published [see also D. Beasley and R. E. Cooper, in: Fourth International Conference on Beryllium, London, 1977, paper 24, The Metals Society, London (1977)].

    Google Scholar 

  45. R. E, Cooper, Fracture Toughness in Beryllium, AWRE Report No. 017 /72 (1972).

    Google Scholar 

  46. D. R. Mash, N. E. Weare, and D. L. Walker, Process Variables in Plasma-Jet Spraying, J. Met. 13, 473–478 (1961).

    CAS  Google Scholar 

  47. J. E. J. Bunce, private communication (1967).

    Google Scholar 

  48. C. W. Marynowski, F. A. Halden, and E. P. Farley, Variables in Plasma Spraying, Eiectrochetn. Technol. 1965,. 109–115 (1965).

    Google Scholar 

  49. J. L. Engelke, Heat Transfer to Particles in the Plasma Flame, Proceedings of AIChE Meeting, Los Angeles, California, February 5, 1962.

    Google Scholar 

  50. P. B. Kantor, R. M. Krasovitskaya, and A, N. Kisel’, Determination of Enthalpy and Thermal Capacity of Beryllium in the Range 600–2200°K, Phys, Met.t e allogr. 10.42–44 (1960) [F’ïz. Met, Metalloved. 10(6), 835–837 (1960)1.

    Google Scholar 

  51. R. F. Smart and J. A. Catherall, Plasma.Spraying, Mills and Boon, London (1972).

    Google Scholar 

  52. D. L. Walker, Plasma Gun, Powder Feeder, Metering Wheel Type, British Patent No. 1, 378, 748 (1974).

    Google Scholar 

  53. R. E. Neal, Thermal Flow Rate Monitor for Metallic Powder, Oak Ridge Y-12 Report No, Y.SC.79.

    Google Scholar 

  54. B. Gross, B. Grycz, and K. Miklóssy, P(nsma Technology (English translation Z. Rudinger), R. C. G. Leckey (Ed.), Iliffe Books, London-SNTL, Prague (1963).

    Google Scholar 

  55. R. M. Gage, O. H. Nestor, and D. M, Yenni, Collimated Electric Arc-Powder Deposition Process, U.S. Patent No. 3,016, 447 (1962).

    Google Scholar 

  56. R. J. Baird, private communication.

    Google Scholar 

  57. J. E. Jackson, Method for Shielding a Gas Effluent, U.S. Patent No. 3, 470, 347 (1969).

    Google Scholar 

  58. M. Brady, unpublished.

    Google Scholar 

  59. H. S. Ingham and A. P. Shepard, Flame Spray Handbook (especially Vol. 3), Metco (1965).

    Google Scholar 

  60. R. J. Baird and T. G. Everett, Jr., Reusable Mandrel for Structures having Zero Draft or Re-Entrant Geometries, U.S. Patent No. 3, 864, 150 (1975).

    Google Scholar 

  61. Smithsonian Physical Tables, 9th ed., p. 363, The Smithsonian Institution, Washington (1959).

    Google Scholar 

  62. R. J. Baird, private communication (January 31, 1977 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dunmur, I.W. (1979). Plasma-Sprayed Beryllium. In: Floyd, D.R., Lowe, J.N. (eds) Beryllium Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0668-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0668-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0670-3

  • Online ISBN: 978-1-4757-0668-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics