Skip to main content

Nonadiabatic Processes in Molecular Collisions

  • Chapter
Dynamics of Molecular Collisions

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 2))

Abstract

Substantial effort has been directed toward developing methods for describing molecular collision processes that are electronically adiabatic, i.e., for which it can be assumed that nuclear motion evolves on a single potential energy hypersurface. A number of recent reviews are devoted to this subject.(1–8) Considerably less attention has been paid to processes that are nonadiabatic,i.e., that involve electronic transitions between potential energy surfaces. This is in spite of the fact that nonadiabatic behavior is both common and important, even in thermal energy collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Rapp and T. Kassal. The theory of vibrational energy transfer between simple molecules in nonreactive collisions, Chem. Rev. 69, 61–102 (1969).

    Article  CAS  Google Scholar 

  2. R. J. Cross, Jr., in: Molecular Beams and Reaction Kinetics (Ch. Shlier, ed.), pp. 50–61, Academic Press, Inc., New York (1970).

    Google Scholar 

  3. D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  4. R. D. Levine, in: MTP International Review of Science, Physical Chemistry (W. Byers-Brown, ed.), Vol. I, pp. 229–266, University Park Press, Baltimore (1972).

    Google Scholar 

  5. D. Secrest, Theory of rotational and vibrational energy transfer in molecules, Annu. Rev. Phys. Chem. 24, 379–406 (1973).

    Article  CAS  Google Scholar 

  6. T. F. George and J. Ross, Quantum dynamical theory of molecular collisions, Annu. Rev. Phys. Chem. 24, 263–300 (1973).

    Article  CAS  Google Scholar 

  7. J. C. Polanyi and J. L. Schreiber, in: Kinetics of Gas Reactions (H. Eyring, W. Jost, and D. Henderson, eds.), Chap. 9, Academic Press, Inc., New York (1974).

    Google Scholar 

  8. D. A. Micha, Quantum theory of reactive molecular collisions, Adv. Chem. Phys. 30, 221–260 (1975).

    Google Scholar 

  9. E. E. Nikitin, in: Chemische Elementarprozesse ( H. Hartmann, ed.), pp. 43–77, Springer-Verlag, Berlin (1968).

    Chapter  Google Scholar 

  10. T. Watanabe, in: Advances in Chemistry. Radiation Chemistry II ( E. J. Hart, ed.), pp. 176–193, American Chemical Society, Wahington, D.C. (1968).

    Chapter  Google Scholar 

  11. F. T. Smith, Elastic and inelastic atom-atom scattering, Lect. Theor. Phys. XIC, 95–117 (1969).

    Google Scholar 

  12. J. Callaway, Inelastic atom-atom collisions, Lect. Theor. Phys. XIC, 119–137 (1969).

    Google Scholar 

  13. E. Bauer, in: Kinetic Processes in Gases and Plasmas ( R. A. Hochstim, ed.), pp. 381–429, Academic Press, Inc., New York (1969).

    Chapter  Google Scholar 

  14. R. S. Berry, in: Molecular Beams and Reaction Kinetics ( Ch. Schlier, ed.), pp. 193–228, Academic Press, Inc., New York, (1970).

    Google Scholar 

  15. R. S. Berry, in: Molecular Beams and Reaction Kinetics ( Ch. Schlier, ed.), pp. 229–248, Academic Press, Inc., New York, (1970).

    Google Scholar 

  16. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Oxford University Press, London (1965).

    Google Scholar 

  17. H. S. W. Massey, Electronic and Ionic Impact Phenomena,Vol. III, Oxford University Press, London (1971), Chap. 18.

    Google Scholar 

  18. R. A. Mapelton, The Theory of Charge Exchange, John Wiley and Sons, Inc. ( Interscience Division ), New York (1972).

    Google Scholar 

  19. E. W. Thomas, Excitation in Heavy Particle Collisions, John Wiley and Sons, Inc. ( Interscience Division ), New York (1972).

    Google Scholar 

  20. E. E. Muschlitz, Collisions of electronically excited atoms and molecules, Adv. Chem. Phys. 10, 171–194 (1966).

    Article  Google Scholar 

  21. B. A. Thrush, Gas reactions yielding electronically excited species, Annu. Rev. Phys. Chem. 19, 371–388 (1968).

    Article  CAS  Google Scholar 

  22. F. R. Gilmore, E. Bauer, and J. W. McGowan, A review of atomic and molecular excitation mechanics in non-equilibrium gases up to 20,000°K, J. Quant. Spectrosc. Radiat. Transfer 9, 157–183 (1969).

    Article  CAS  Google Scholar 

  23. R. B. Cundall, in: Transfer and Storage of Energy by Molecules (G. M. Burnett and A. M. North, eds.), Vol. I, pp. 1–63, John Wiley and Sons, Inc. (Interscience Division), New York (1969).

    Google Scholar 

  24. A. B. Callear and J. D. Lambert, in: Comprehensive Chemical Kinetics (C. H. Bamford and C. F. H. Tipper, eds.), Vol. 3, pp. 182–273, Elsevier Publishing Company, Amsterdam (1969).

    Google Scholar 

  25. I. W. M. Smith, in: The Role of the Excited State in Chemical Physics (J. W. McGowan, ed.), John Wiley and Sons, Inc. ( Interscience Division ), New York (1973).

    Google Scholar 

  26. R. J. Donovan and D. Husain, Recent advances in the chemistry of electronically excited atoms, Chem. Rev. 70, 489–516 (1970).

    Article  CAS  Google Scholar 

  27. J. I. Steinfeld, Quenching of fluorescence in small molecules, Acc. Chem. Res. 3, 313–320 (1970).

    Article  CAS  Google Scholar 

  28. R. F. Vasil’ev, Chemiluminescence excitation mechanisms, Russ. Chem. Rev. 39, 529–544 (1970).

    Article  Google Scholar 

  29. T. Carrington and J. C. Polanyi, in: MTPlnternational Review of Science, Physical Chemistry (J. C. Polanyi, ed.), Vol. 9, pp. 135–171, University Park Press, Baltimore (1972).

    Google Scholar 

  30. D. H. Stedman and D. W. Setzer, Chemical applications of metastable rare gas atoms, Prog. React. Kinet. 6, 193–238 (1972).

    Google Scholar 

  31. M. Born and J. R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. der Phys. 84, 457–484 (1927).

    Article  CAS  Google Scholar 

  32. A. Messiah, Quantum Mechanics, Vol. II, Chap. 18, John Wiley and Sons, Inc., New York (1962).

    Google Scholar 

  33. W. H. Miller, The semiclassical nature of atomic and molecular collisions, Acc. Chem. Res. 4, 161–167 (1971).

    Article  CAS  Google Scholar 

  34. E. Bauer, E. R. Fisher, and F. R. Gilmore, De-excitation of electronically excited sodium by nitrogen, J. Chem. Phys. 51, 4173–4181 (1969).

    Article  CAS  Google Scholar 

  35. J. C. Tully and R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions, J. Chem. Phys. 55, 562–572 (1971).

    Article  CAS  Google Scholar 

  36. W. H. Miller and T. F. George, Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom, J. Chem. Phys. 56, 5637–5652 (1972).

    Article  CAS  Google Scholar 

  37. W. H. Miller, Classical limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69–177 (1974).

    Article  Google Scholar 

  38. R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill Book Company, New York (1966).

    Google Scholar 

  39. M. L. Goldberger and K. M. Watson, Collision Theory, John Wiley and Sons, Inc., New York (1964).

    Google Scholar 

  40. J. R. Taylor, Scattering Theory. The Quantum Theory of Nonrelativistic Collisions, John Wiley and Sons, Inc., New York, (1972).

    Google Scholar 

  41. L. S. Rodberg and R. M. Thaler, Introduction to the Quantum Theory of Scattering, Academic Press, Inc., New York (1967).

    Google Scholar 

  42. H. Laue, Coupling between nuclear and electronic motion in diatomic molecules, J. Chem. Phys. 46, 3034–3040 (1967).

    Article  CAS  Google Scholar 

  43. W. Kolos, Adiabatic approximation and its accuracy, Adv. Quantum. Chem. 5, 99–133 (1970).

    Article  CAS  Google Scholar 

  44. J. C. Tully, Diatomics-in-Molecules potential energy surfaces. II. Nonadiabatic and spin-orbit interactions, J. Chem. Phys. 59, 5122–5134 (1973).

    Article  CAS  Google Scholar 

  45. N. F. Mott, On the theory of excitation by collisions with heavy particles, Proc. Cambridge Philos. Soc. 27, 553–560 (1931).

    Article  Google Scholar 

  46. J. von Neumann and E. P. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Phys. Z. 30, 467–470 (1929).

    Google Scholar 

  47. G. Herzberg and H. C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules, Discuss. Faraday Soc. 35, 77–82 (1963).

    Article  Google Scholar 

  48. E. Teller, The crossing of potential surfaces, J. Phys. Chem. 41, 109–115 (1937).

    Article  CAS  Google Scholar 

  49. T. F. George, K. Morokuma, and Y.-W. Lin, Real and complex intersections between potential energy surfaces of the same symmetry in polyatomic systems, Chem. Phys. Lett. 30, 54–57 (1975).

    Article  CAS  Google Scholar 

  50. W. Lichten, Resonant charge exchange in atomic collisions, Phys. Rev., 131, 229–238 (1963).

    Article  CAS  Google Scholar 

  51. T. F. O’Malley, Diabetic state of molecules-Quasistationary electronic states, Adv. At. Mol. Phys. 7, 223–249 (1971).

    Article  Google Scholar 

  52. R. W. Numrich and D. G. Truhlar, Mixing of ionic and covalent configurations for NaH, KH and MgH+, J. Phys. Chem. 79, 2745–2766 (1975).

    Article  CAS  Google Scholar 

  53. F. T. Smith, Diabatic and adiabatic representations for atomic collision problems, Phys. Rev. 179, 111–123 (1969).

    Article  Google Scholar 

  54. M. Baer, Adiabatic and diabatic representations for atom-molecule collisions, Chem. Phys. Lett. 35, 112–118 (1975).

    Article  CAS  Google Scholar 

  55. T. Carrington, The geometry of intersecting potential surfaces, Acc. Chem. Res. 7, 20–25 (1974).

    Article  CAS  Google Scholar 

  56. R. K. Preston and J. C. Tully, Effects of surface crossing in chemical reactions: The H3 system, J. Chem. Phys. 54, 4297–4304 (1971).

    Article  CAS  Google Scholar 

  57. S. Chapman and R. K. Preston, Nonadiabatic molecular collisions: Charge exchange and chemical reaction in the Ar.-H2 system, J. Chem. Phys. 60, 650–659 (1974).

    Article  CAS  Google Scholar 

  58. H. S. W. Massey, Collisions between atoms and molecules at ordinary temperatures, Rep. Prog. Phys. 12, 248–269 (1949).

    Article  CAS  Google Scholar 

  59. H. F. Schaefer III, The Electronic Structure of Atoms and Molecules, Addison-Wesley Publishing Company, Inc., Reading, Mass. (1972).

    Google Scholar 

  60. J. N. Bardsley, Pseudopotentials in atomic and molecular physics, Case Stud. At. Phys. 4, 299–368 (1974).

    CAS  Google Scholar 

  61. A. C. Roach and M. S. Child, Electronic potential energy surfaces for the reaction K + NaCI-*KC1 + Na, Mol. Phys. 14, 1–15 (1968).

    Article  CAS  Google Scholar 

  62. C. F. Melius, W. A. Goddard III, and L. R. Kahn, Use of ab initio G1 effective potentials for calculations of molecular excited states, J. Chem. Phys. 56, 3342–3348 (1972).

    Article  CAS  Google Scholar 

  63. W. Moffitt, Atoms in molecules and crystals, Proc. R. Soc. London Ser. A 210, 245–268 (1951).

    Article  CAS  Google Scholar 

  64. G. G. Balint-Kurti and M. Karplus, Potential energy surfaces for simple chemical reactions: Li + F2- LiF + F, Chem. Phys. Lett. 11, 203–207 (1971).

    Article  CAS  Google Scholar 

  65. F. O. Ellison, A method of diatomics in molecules. I. General theory and application to H2O, J. Am. Chem. Soc. 85, 3540–3544 (1963).

    Article  CAS  Google Scholar 

  66. P. J. Kuntz and A. C. Roach, Ion-molecule reactions of rare gases with hydrogen, J. Chem. Soc. Faraday Trans. 2, 68, 259–280 (1972).

    Article  CAS  Google Scholar 

  67. J. C. Tully, Diatomics-in-molecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58, 1396–1410 (1973).

    Article  CAS  Google Scholar 

  68. T. E. H. Walker and W. G. Richards, Molecular spin—orbit coupling constants. The role of core polarization, J. Chem. Phys. 52, 1311–1314 (1970).

    Article  CAS  Google Scholar 

  69. W. H. Moores and R. McWeeney, The calculation of spin—orbit splitting and g tensors for small molecules and radicals, Proc. R. Soc. London Ser. A 332, 365–384 (1973).

    Article  CAS  Google Scholar 

  70. F. H. Mies, Molecular theory of atomic collisions: Fine-structure transitions, Phys. Rev. A 7, 942–957 (1973).

    Article  CAS  Google Scholar 

  71. J. S. Cohen and B. Schneider, Ground and excited states of Nee and Net. I. Potential curves with and without spin—orbit coupling, J. Chem. Phys. 61, 3230–3239 (1974).

    Article  CAS  Google Scholar 

  72. J. C. Browne, Molecular wave functions: Calculation and use in atomic and molecular processes, Adv. At. Mol. Phy. 7, 47–95 (1971).

    Article  Google Scholar 

  73. W. R. Thorson, Asymptotic coriolis interactions in slow atomic collisions, J. Chem. Phys. 50, 1702–1704 (1969).

    Article  CAS  Google Scholar 

  74. V. Sidis, Simple expression for the off-diagonal matrix elements of the d/dR operator between exact electronic states of a diatomic molecule, J. Chem. Phys. 55, 5838–5839 (1971).

    Article  CAS  Google Scholar 

  75. W. R. Thorson, Theory of slow atomic collisions. I. Hz, J. Chem. Phys. 42, 3878–3891 (1965).

    Article  CAS  Google Scholar 

  76. S. B. Schneiderman and A. Russek, Velocity-dependent orbitals in proton-on-hydrogenatom collisions, Phys. Rev. 181, 311–321 (1969).

    Article  CAS  Google Scholar 

  77. D. R. Bates and D. Sprevak, Translation factor in basis functions used in perturbed stationary state approximation and capture in H+—H (IS) collisions, J. Phys. B 4, L47–51 (1971).

    Article  CAS  Google Scholar 

  78. C. F. Melius and W. A. Goddard III, The theoretical description of an asymmetric, nonresonant charge transfer process, Chem. Phys. Len. 15, 524–529 (1972).

    Article  CAS  Google Scholar 

  79. H. S. W. Massey and R. A. Smith, The passage of positive ions through gases, Proc. R. Soc. London A 142, 142–172 (1933).

    Article  CAS  Google Scholar 

  80. R. P. Marchi and F. T. Smith, Theory of elastic differential scattering in low-energy Hem—He collisions, Phys. Rev. 139, A1025–1038 (1965).

    Article  Google Scholar 

  81. E. E. Nikitin, Remarks on different theoretical approaches to the collisionally induced depolarization of atomic states, Comments At. Mol. Phys. 3, 7–14 (1971).

    CAS  Google Scholar 

  82. D. G. Truhlar, Multiple potential energy surfaces for reactions of species in degenerate electronic states, J. Chem. Phys. 56, 3189–3190 (1972).

    Article  CAS  Google Scholar 

  83. J. T. Muckerman and M. D. Newton, Comment on “multiple potential energy surfaces for reactions of species in degenerate electronic states” by D. G. Truhlar, J. Chem. Phys. 56, 3191–3192 (1972).

    Article  CAS  Google Scholar 

  84. J. C. Tully, Collisions of F (2P1,2) with H2, J. Chem. Phys. 60, 3042–3050 (1974).

    Article  CAS  Google Scholar 

  85. W. H. Miller, Theory of Penning ionization. I. Atoms, J. Chem. Phys. 52, 3563–3572 (1970).

    Article  CAS  Google Scholar 

  86. H. Nakamura, Theoretical considerations on Penning ionization processes, J. Phys. Soc. Jpn 26, 1473–1479 (1969).

    Article  CAS  Google Scholar 

  87. S. A. Evans, J. S. Cohen, and N. F. Lane, Quantum-mechanical calculation of cross sections for inelastic atom—atom collisions. I, Phys. Rev. A 4, 2235–2248 (1971).

    Google Scholar 

  88. L. Lenamon, J. C. Browne, and R. E. Olson, Theoretical low-energy inelastic-scattering cross sections for He (23S) + He (1 `S) He (23P) + He (1 S), Phys. Rev. A 8, 2380–2386 (1973).

    Article  CAS  Google Scholar 

  89. R. E. Olson, Low-energy theoretical inelastic-scattering differential cross sections for the process H++ He—*H++ He (23S), Phys. Rev. A 5, 2094–2103 (1972).

    Article  Google Scholar 

  90. F. H. Mies, Molecular theory of atomic collisions: Calculated cross sections for H+ + F (2P), Phys. Rev. A. 7, 957–967 (1973).

    CAS  Google Scholar 

  91. R. H. Reid, Transitions among the 3p2 P states of sodium induced by collisions with helium, J. Phys. B 6, 2018–2039 (1973).

    Article  CAS  Google Scholar 

  92. J. S. Cohen, S. A. Evans, and N. F. Lane, Quantum-mechanical calculation of cross sections for inelastic atom—atom collisions. II, Phys. Rev. A 4, 2248–2253 (1971).

    Article  Google Scholar 

  93. H. Nakamura, Theoretical studies of inelastic atomic collisions in a two-state model problem. Mol. Phys. 25, 577–602 (1973).

    Article  Google Scholar 

  94. H. G. Guerin, T. P. Tsien, B. C. Eu, and R. E. Olson, Comment on the accuracy of the uniform WKB theory of inelastic collisions, Phys. Rev. A 9, 995–998 (1974).

    Article  CAS  Google Scholar 

  95. J. B. Delos, Studies of the potential-curve-crossing problem. III, Phys. Rev. A9, 1626–1634 (1974).

    Article  CAS  Google Scholar 

  96. A. C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation, J. Comput. Phys. 6, 378–391 (1970).

    Article  Google Scholar 

  97. W. A. Lester, Jr., and R. B. Bernstein, Computational procedure for the close-coupled rotational excitation problem, J. Chem. Phys. 48, 4896–4904 (1968).

    Article  CAS  Google Scholar 

  98. R. G. Gordon, Quantum scattering using piecewise analytic solutions, Methods Comput. Phys, 10, 81–110 (1971).

    CAS  Google Scholar 

  99. W. N. Sams and D. J. Kouri, Noniterative solutions of integral equations of scattering. II. Coupled channels, J. Chem. Phys. 51, 4815–4819 (1969).

    Article  CAS  Google Scholar 

  100. B. R. Johnson and D. Secrest, The solution of the nonrelativistic quantum scattering problem without exchange, J. Math. Phys. (N.Y.) 7, 2187 (1966).

    Article  CAS  Google Scholar 

  101. B. R. Johnson, The multichannel log-derivative method for scattering calculations, J. Comput. Phys. 13, 445–449 (1973).

    Article  Google Scholar 

  102. J. C. Light, Quantum theories of chemical kinetics, Adv. Chem. Phys. 19, 1–31 (1971).

    Article  CAS  Google Scholar 

  103. W. A. Lester, Jr., Calculation of cross sections for rotational excitation of diatomic molecules by heavy particle impact: Solution of close-coupled equations, Methods Comput. Phys. 10, 211–242 (1971).

    CAS  Google Scholar 

  104. W. A. Lester, Jr. and J. Schaefer, Rotational transitions in H2 by Li’ collisions; comparison with experiment, J. Chem. Phys. 60, 1672–1674 (1974).

    Article  CAS  Google Scholar 

  105. P. McGuire, Coupled-states approach for elastic and for rotationally and vibrationally inelastic atom-molecule collisions, J. Chem. Phys. 62, 525–534 (1975).

    Article  CAS  Google Scholar 

  106. R. A. Marcus, Analytical mechanics of chemical reactions. III. Natural collision coordinates, J. Chem. Phys. 49, 2610–2616 (1968).

    Article  CAS  Google Scholar 

  107. G. Wolken, Jr. and M. Karplus, Theoretical studies of H+H2 reactive scattering, J. Chem. Phys. 60, 351–367 (1974).

    Article  CAS  Google Scholar 

  108. J. C. Light, Quantum calculations in chemically reactive systems, Methods Comput. Phys. 10, 111–143 (1971).

    CAS  Google Scholar 

  109. B. R. Johnson and R. D. Levine, A new approach to non-adiabatic transitions in collision theory, Chem. Phys. Lett. 13, 168–171 (1972).

    Article  CAS  Google Scholar 

  110. H. Nakamura, Theory of electronically non-adiabatic chemical reactions: Quantum formulation of collinear reactions, Mol. Phys. 26, 673–685 (1973).

    Article  CAS  Google Scholar 

  111. Z. Top and M. Baer, Non-adiabatic transitions in chemical reaction. A quantum mechanical study, Chem. Phys. 10, 95–106 (1975).

    Article  CAS  Google Scholar 

  112. I. H. Zimmerman and T. F. George, Quantum resonance effects in electronic-to-vibrational energy transfer in molecular collisions, J. Chem. Phys. 61, 2468–2470 (1974).

    Article  CAS  Google Scholar 

  113. I. H. Zimmerman and T. F. George, Quantum mechanical study of electronic transitions in collinear atom-diatom collisions, Chem. Phys. 7, 323–335 (1975).

    Article  CAS  Google Scholar 

  114. O. H. Crawford, Calculation of chemical reaction rates by variational methods, J. Chem. Phys. 55, 2571–2574 (1971).

    Article  CAS  Google Scholar 

  115. W. H. Miller, Coupled equations and the minimum principle for collision of an atom and a diatomic molecule, including rearrangements, J. Chem. Phys. 50, 407–418(1969).

    Article  Google Scholar 

  116. R. Conn and H. Rabitz, Decomposition of K and T matrices for inelastic scattering using variational principles, J. Chem. Phys. 61, 600–608 (1974).

    Article  CAS  Google Scholar 

  117. J. H. Weare and E. Thiele, Variation procedure for multichannel scattering processes, Phys. Rev. 167, 11–13 (1968).

    Article  Google Scholar 

  118. R. G. Gordon and T.-N. Chiu, On a first-order electronic dipole-dipole mechanism for energy transfer in molecular collisions, J. Chem. Phys. 55, 1469–1471 (1971).

    Article  CAS  Google Scholar 

  119. R. E. Olson and F. T. Smith, Collision spectroscopy. IV. Semiclassical theory of inelastic scattering with applications to He + Ne, Phys. Rev. A 3, 1607–1617 (1971).

    Article  Google Scholar 

  120. M. Karplus, in: Molecular Beams and Reaction Kinetics ( Ch. Schlier, ed.), pp. 407–426, Academic Press, Inc., New York (1970).

    Google Scholar 

  121. B. H. Choi and K. T. Tang, Theory of distorted-wave Born approximation for reactive scattering of an atom and a diatomic molecule, J. Chem. Phys. 61, 5147–5157 (1974).

    Article  CAS  Google Scholar 

  122. P. Pechukas and J. C. Light, On the exponential form of time-displacement operators in quantum mechanics, J. Chem. Phys. 44, 3897–3912 (1966).

    Article  Google Scholar 

  123. R. D. Levine, Exponential approximations in collision theory, Mol. Phys. 22, 497–523 (1971).

    Article  CAS  Google Scholar 

  124. R. A. Marcus, On the analytical mechanics of chemical reactions. Quantum mechanics of linear collisions, J. Chem. Phys. 45, 4493–4499 (1966).

    Article  CAS  Google Scholar 

  125. B. C. Eu and J. Ross, Optical potential for a chemically reactive system, Discuss. Faraday Soc. 44, 39–45 (1967).

    Article  Google Scholar 

  126. C. A. Coulson and B. R. Gerber, A lower-bound property of adiabatic phase shifts, Mol. Phys. 14, 117–131 (1968).

    Article  Google Scholar 

  127. R. D. Levine, Variational corrections to decoupling approximations in molecular collision theory, J. Chem. Phys. 50, 1–6 (1969).

    Article  CAS  Google Scholar 

  128. D. A. Micha, Optical potentials in molecular collisions, J. Chem. Phys. 50, 722–726 (1969).

    Article  CAS  Google Scholar 

  129. R. D. Levine, B. R. Johnson, and R. B. Bernstein, Role of potential curve crossing in subexcitation molecular collisions, J. Chem. Phys. 50, 1694–1701 (1969).

    Article  CAS  Google Scholar 

  130. R. E. Roberts, Improved perturbation theory for inelastic encounters, J. Chem. Phys. 55, 100–104 (1971).

    Article  CAS  Google Scholar 

  131. R. B. Bernstein and K. H. Kramer, Sudden approximation applied to rotational excitation of molecules in atoms. II, J. Chem. Phys. 44, 4473–4485 (1966).

    Article  CAS  Google Scholar 

  132. R. J. Cross, Jr., Semiclassical theory of inelastic scattering: Diagonalization of the phase shift matrix, J. Chem. Phys. 49, 1753 (1968).

    Article  CAS  Google Scholar 

  133. M. D. Pattengill, C. F. Curtiss, and R. B. Bernstein, Molecular collisions. XIV. First-order approximation of the generalized phase shift treatment of rotational excitation: Atom-rigid rotor, J. Chem. Phys. 54, 2197–2207 (1971).

    Article  CAS  Google Scholar 

  134. M. Wartell and R. J. Cross, Jr., Semiclassical theory of vibrationally inelastic scattering in three dimensions, J. Chem. Phys. 55, 4983–4991 (1971).

    Article  CAS  Google Scholar 

  135. R. T. Pack, Relations between some exponential approximations in rotationally inelastic molecular collisions, Chem. Phys. Lett. 14, 393–395 (1972).

    Article  CAS  Google Scholar 

  136. D. A. Micha and M. Rotenberg, Collision energy dependence of angular distributions for vibrational excitation of H2 by He, Chem. Phys. Lett. 13, 289–291 (1972).

    Article  CAS  Google Scholar 

  137. H. Rabitz, Effective potentials in molecular collisions, J. Chem. Phys. 57, 1718–1725 (1972).

    Article  CAS  Google Scholar 

  138. G. Zarur and H. Rabitz, Rotationally inelastic scattering with effective potentials, J. Chem. Phys. 59, 943–951 (1973).

    Article  CAS  Google Scholar 

  139. R. A. White, A. Altenberger-Siczek, and J. C. Light, Optical potentials in time-dependent quantum theory, J. Chem. Phys. 59, 200–205 (1973).

    Article  CAS  Google Scholar 

  140. G. Zarur and H. Rabitz, Effective potential formulation of molecule-molecule collisions with application to H2–H2, J. Chem. Phys. 60, 2057–2078 (1974).

    Article  CAS  Google Scholar 

  141. P. McGuire and D. J. Kouri, Quantum mechanical close-coupling approach to molecular collisions. Jr-conserving coupled-states approximation, J. Chem. Phys. 60, 2488–2499 (1974).

    Article  CAS  Google Scholar 

  142. M. Tamir and M. Shapiro, The approximate conservation of P-helicity in rotational excitation: A new decoupling scheme, Chem. Phys. Lett. 31, 166–171 (1975).

    Article  CAS  Google Scholar 

  143. D. Secrest, Theory of angular momentum decoupling approximations for rotational transitions in scattering, J. Chem. Phys. 62, 710–719 (1975).

    Article  CAS  Google Scholar 

  144. D. A. Micha, Effective Hamiltonian methods for molecular collision, Adv. Quantum Chem. 8, 231–287 (1974).

    Article  CAS  Google Scholar 

  145. R. J. Cross, Jr., Semiclassical methods in inelastic scattering, J. Chem. Phys. 51, 5163–5170 (1969).

    Article  CAS  Google Scholar 

  146. D. R. Bates and D. S. F. Crothers, Semiclassical treatment of atomic collisions, Proc. R. Soc. London Ser. A 315, 465–478 (1970).

    Article  CAS  Google Scholar 

  147. J. B. Delos, W. R. Thorson, and S. Knudson, Semiclassical theory of inelastic collisions. I. Classical picture and semiclassical formulation, Phys. Rev. A 6, 709–720 (1972).

    Article  Google Scholar 

  148. J. B. Delos and W. R. Thorson, Semiclassical theory of inelastic collisions. II. Momentum-space formulation, Phys. Rev. A 6, 720–727 (1972).

    Article  Google Scholar 

  149. A. M. Wooley and S. E. Nielsen, On the limits of applicability of the classical trajectory equations in the two-state approximation, Chem. Phys. Lett. 21, 491–494 (1973).

    Article  Google Scholar 

  150. D. R. Bates and A. R. Holt, Impact parameter and semi-classical treatments of atomic collisions, Proc. R. Soc. London Ser. A 292, 168–179 (1966).

    Article  CAS  Google Scholar 

  151. A. M. Arthurs, The mathematical equivalence of the Born approximation and the method of impact parameters, Proc. Cambridge Philos. Soc. 57, 904–905 (1961).

    Article  Google Scholar 

  152. J. C. Y. Chen, C. J. Joachain, and K. M. Watson, Electronic transitions in slow collisions of atoms and molecules. IV, Phys. Rev. A 5, 1268–1285 (1972).

    Google Scholar 

  153. J. Callaway and E. Bauer, Inelastic collisions of slow atoms, Phys. Rev. 140, A1072–1084 (1965).

    Article  Google Scholar 

  154. L. Wilets and S. J. Wallace, Eikonal method in atomic collisions. I, Phys. Rev. 169, 84–91 (1968).

    Article  Google Scholar 

  155. J. C. Y. Chen. T. Ishihara, V. H. Ponce, and K. M. Watson, Electronic transitions in slow collisions of atoms and molecules. V, Phys. Rev. A 8, 1334–1344 (1973).

    Google Scholar 

  156. A. P. Penner and R. Wallace, Semiclassical normalization of a path integral for a multichannel scattering problem, Phys. Rev. A 11, 149–153 (1975).

    Article  Google Scholar 

  157. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book Company, New York (1965).

    Google Scholar 

  158. P. Pechukas, Time dependent semiclassical scattering theory. II. Atomic collisions, Phys. Rev. 181, 174–184 (1969).

    Article  CAS  Google Scholar 

  159. P. Pechukas and J. P. Davis, Semiclassical theory of weak vibrational excitation, J. Chem. Phys. 56, 4970–4975 (1972).

    Article  CAS  Google Scholar 

  160. L. D. Landau, Zur Theorie der Energieübertragung. II, Phys. Z. Sowjetunion 2, 46–51 (1932).

    CAS  Google Scholar 

  161. C. Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. London Ser. A 137, 696–702 (1932).

    Article  Google Scholar 

  162. E. C. G. Stueckelberg, Theorie der unelastischen Stösse zwischen Atomen, Helv. Phys. Acta 5, 369–422 (1932).

    Google Scholar 

  163. D. R. Bates, Collisions involving the crossing of potential energy curves, Proc. R. Soc. London Ser. A 257, 22–31 (1960).

    Article  CAS  Google Scholar 

  164. E. E. Nikitin, The Landau-Zener model and its region of applicability, Comments At. Mol. Phys. 1, 166–172 (1970).

    CAS  Google Scholar 

  165. M. S. Child, On the Stueckelberg formula for non-adiabatic transitions, Mol. Phys. 28, 495–501 (1974).

    Article  CAS  Google Scholar 

  166. E. E. Nikitin, The theory of nonadiabatic transitions: Recent development with exponential models, Adv. Quantum Chem. 5, 135–184 (1970).

    Article  CAS  Google Scholar 

  167. J. B. Delos and W. R. Thorson, Studies of the potential-curve-crossing problem. II, Phys. Rev. A 6, 728–745 (1972).

    Article  Google Scholar 

  168. Yu. N. Demkov, Charge transfer at small resonance defects, Zh. Eksp. Teor. Fiz. 45, 195–201 (1963).

    Google Scholar 

  169. R. E. Olson, Charge transfer at large internuclear distances, Phys. Rev. A 6, 1822–1830 (1972).

    Article  CAS  Google Scholar 

  170. L. Vainshtein, L. Presnyakov, and I. Sobel’man, Excitation of atoms by heavy particles, Zh. Eksp. Teor. Fiz. 43, 518–524 (1962).

    CAS  Google Scholar 

  171. D. R. Bates, Collision processes not involving chemical reactions, Discuss. Faraday Soc. 33, 7–13 (1962).

    Article  Google Scholar 

  172. E. F. Gurnee and J. L. Magee, Interchange of charge between gaseous molecules in resonant and near-resonant processes, J. Chem. Phys. 26, 1237–1248 (1957).

    Article  CAS  Google Scholar 

  173. N. Rosen and C. Zener, Double Stern-Gerlach experiment and related collision phenomena, Phys. Rev. 40, 502–507 (1932).

    Article  CAS  Google Scholar 

  174. D. Rapp and W. E. Francis, Charge exchange between gaseous ions and atoms, J. Chem. Phys. 37, 2631–2645 (1962).

    Article  CAS  Google Scholar 

  175. H. Nakamura, Collisional excitation transfer between atoms in near-resonant processes, J. Phys. Soc. Jpn 20, 2272–2278 (1965).

    Article  CAS  Google Scholar 

  176. K. Birkinshaw and J. B. Hasted, Inelastic collisions between atomic ions and diatomic molecules, J. Phys. B 4, 1711–1725 (1971).

    Article  CAS  Google Scholar 

  177. E. I. Dashevskaya, E. E. Nikitin, and A. I. Reznikov, Theory of collisionally induced intramultiplet mixing in excited alkali atoms, J. Chem. Phys. 53, 1175–1180 (1970).

    Article  CAS  Google Scholar 

  178. E. E. Nikitin, Nonadiabatic transitions between fine-structure components of alkali metal atoms during atomic collisions, Opt. Spectros. USSR. 19, 19–95 (1965).

    Google Scholar 

  179. C. H. Wang and W. J. Tomlinson, Collision-induced anisotropic relaxation in gases, Phys. Rev. 181, 115–124 (1969).

    Article  CAS  Google Scholar 

  180. J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, Reaction of H+ with H2: Experiment, ab initio theory and a conceptual model, Chem. Phys. Lett. 10, 17–21 (1971).

    Article  CAS  Google Scholar 

  181. J. C. Tully, Trajectories in ion—molecule reactions, Ber. Bunsenges. Phys. Chem. 77, 557–565 (1973).

    CAS  Google Scholar 

  182. R. Duren, Differential cross sections for alkali—halogen collisions from trajectory calculations on intersecting surfaces, J. Phys. B 6, 1801–1813 (1973).

    Article  Google Scholar 

  183. J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, Molecular beam and trajectory studies of reactions of H` with Hz, J. Chem. Phys. 60, 1634–1659 (1974).

    Article  CAS  Google Scholar 

  184. R. K. Preston and R. J. Cross, Jr., Competition between charge exchange and chemical reaction: The D++H2 system, J. Chem. Phys. 59, 3616–3622 (1973).

    Article  CAS  Google Scholar 

  185. G. E. Zahr, R. K. Preston, and W. H. Miller, Theoretical treatment of quenching in O (’D) + N2 collisions, J. Chem. Phys. 62, 1127–1135 (1975).

    Article  CAS  Google Scholar 

  186. G. Ochs and E. Teloy, Integral cross sections for reactions of H+ with D2, new measurements, J. Chem. Phys. 61, 4930–4931 (1974).

    Article  CAS  Google Scholar 

  187. M. Lipeles, Simple model for vibrational transfer in ion—molecule charge-exchange excitation, J. Chem. Phys. 5, 1252–1253 (1969).

    Article  Google Scholar 

  188. E. R. Fisher and E. Bauer, On the quenching of O (`D) by N2 and related reactions, J. Chem. Phys. 57, 1966–1974 (1972).

    Article  CAS  Google Scholar 

  189. A. Bjerre and E. E. Nikitin, Energy transfer in collisions of an excited sodium atom with a nitrogen molecule, Chem. Phys. Lett. 1, 179–181 (1967).

    Article  CAS  Google Scholar 

  190. E. R. Fisher and G. K. Smith, Vibration—electronic coupling in the quenching of electronically excited alkali atoms by diatomics, App. Opt. 10, 1803–1813 (1971).

    Article  CAS  Google Scholar 

  191. A. M. Wooley, Semiclassical scattering theory and total cross sections for systems with many crossing points, Mol. Phys. 22, 607–618 (1971).

    Article  Google Scholar 

  192. G. M. Kendall and R. Grice, Vibrational coordinates in the electron jump model, Mol. Phys. 24, 1373–1382 (1972).

    Article  CAS  Google Scholar 

  193. E. A. Gislason, Surface crossing model for ion—molecule reactions, J. Chem. Phys. 57, 3396–3400 (1972).

    Article  CAS  Google Scholar 

  194. M. S. Child, Franck—Condon transitions in multi-curve crossing processes, Faraday Discuss. Chem. Soc. 55, 30–33 (1973).

    Article  CAS  Google Scholar 

  195. Yu. N. Demkov and V. I. Osherov, Stationary and nonstationary problems in quantum mechanics that can be solved by means of contour integration, Zh. Eksp. Teor. Fiz. 53, 1589–1599 (1967).

    Google Scholar 

  196. J. B. Delos, On the reactions of N2 with O, J. Chem. Phys. 59, 2365–2369 (1973).

    Article  CAS  Google Scholar 

  197. J. C. Tully, Collision complex model for spin forbidden reactions: Quenching of O (’D) by N2, J. Chem. Phys. 61, 61–68 (1974).

    Article  CAS  Google Scholar 

  198. P. Pechukas, J. C. Light, and C. Rankin, Statistical theory of chemical kinetics, J. Chem. Phys. 44, 794–804 (1966).

    Article  CAS  Google Scholar 

  199. J. R. Krenos and J. C. Tully, Statistical partitioning of electronic energy: Reactions of alkali dimers with halogen atoms, J. Chem. Phys. 62, 420–424 (1975).

    Article  CAS  Google Scholar 

  200. M. Yen Chu and J. S. Dahler, A theory of the collision-induced singlet to triplet transition of methylene, Mol. Phys. 27, 1045–1069 (1974).

    Article  CAS  Google Scholar 

  201. J. C. Tully, Reactions of O (’D) with atmospheric molecules, J. Chem. Phys. 62, 1893–1898 (1975).

    Article  CAS  Google Scholar 

  202. R. D. Levine and R. B. Bernstein, Dynamical theory of vibrational state population distribution in electronic-to-vibrational energy transfer, Chem. Phys. Lett. 15, 1–6 (1972).

    Article  CAS  Google Scholar 

  203. M. A. Gonzalez, G. Karl, and P. J. S. Watson, Electronic—vibrational energy transfer: Hg* + CO, J. Chem. Phys. 57, 4054–4055 (1972).

    Article  CAS  Google Scholar 

  204. Y. Haas, R. D. Levine, and G. Stein, Electronic excitation induced by reactive molecular collisions: A theoretical model, Chem. Phys. Lett. 15, 7–11 (1972).

    Article  CAS  Google Scholar 

  205. A. D. Wilson and R. D. Levine, Simple models of vibrational excitation in energy transfer molecular collisions, Mol. Phys. 27, 1197–1216 (1974).

    Article  CAS  Google Scholar 

  206. R. E. Olson, Absorbing-sphere model for calculating ion—ion recombination total cross sections, J. Chem. Phys. 56, 2979–2984 (1972).

    Article  CAS  Google Scholar 

  207. A. Messiah, Quantum Mechanics, Vol. I, John Wiley and Sons, Inc., New York (1961), Chap. 10.

    Google Scholar 

  208. T. A. Green and M. E. Riley, Strong-coupling semiclassical methods: Phase corrected average approximation for atom—atom collisions, Phys. Rev. A 8, 2938–2945 (1973).

    Article  CAS  Google Scholar 

  209. G. A. L. Delvigne and J. Los, Rainbow, Stueckelberg oscillations and rotational coupling on the differential cross sections of Na+I—Na++I, Physica (Utrecht) 67, 166–196 (1973).

    Article  CAS  Google Scholar 

  210. B. C. Eu and T. P. Tsien, Uniform WKB theory of inelastic collisions: Application to He+—Ne inelastic collisions, Phys. Rev. A 7, 648–657 (1973).

    Article  Google Scholar 

  211. B. C. Eu, Theory of inelastic collisions: Uniform asymptotic (WKB) solutions and semiclassical S-matrix elements for two-channel problems, J. Chem. Phys. 55, 5600–5609 (1971).

    Article  CAS  Google Scholar 

  212. B. C. Eu, Theory of inelastic collisions: Uniform asymptotic (WKB) solutions and semiclassical scattering matrix elements for multichannel problems, J. Chem. Phys. 56, 2507–2516, 5202 (1972).

    Google Scholar 

  213. B. C. Eu, Semiclassical theory of rearrangement and exchange collisions, J. Chem. Phys. 58, 472–478 (1973).

    Article  CAS  Google Scholar 

  214. B. C. Eu, Theory of inelastic collisions: Extension to multiple turning point problems of uniform WKB theory, J. Chem. Phys. 59, 4705–4713 (1973).

    Article  CAS  Google Scholar 

  215. U.-I. Cho and B. C. Eu, Improved solutions to the equation of motion in the uniform WKB theory for two-channel problems, J. Chem. Phys. 61, 1172–1179 (1974).

    Article  CAS  Google Scholar 

  216. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Addison-Wesley Publishing Company. Inc., Reading, Mass. (1958), p. 178.

    Google Scholar 

  217. R. K. Preston, C. Sloan, and W. H. Miller, Semiclassical theory of collisionally induced fine-structure transitions in fluorine atoms, J. Chem. Phys. 60, 4961–4969 (1974).

    Article  CAS  Google Scholar 

  218. Y.-W. Lin, T. F. George,and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: H++D2—*HD++D, J. Chem. Phys: 60, 4311–4322 (1972).

    Article  Google Scholar 

  219. Y.-W. Lin, T. F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: Three-dimensional H++D2—HD++D2, Chem. Phys. Lett. 30, 49–53 (1975).

    Article  CAS  Google Scholar 

  220. T. F. George and Y.-W. Lin, Multiple transition points in a semiclassical treament of electronic transitions in atom (ion)—diatom collisions, J. Chem. Phys. 60, 2340–2349 (1974).

    Article  CAS  Google Scholar 

  221. K. Morokuma and T. F. George, Ab initio calculations of potential energy surfaces in the complex plane. I. General theory and one-electron example. J. Chem. Phys. 59, 1959–1973 (1973).

    Article  CAS  Google Scholar 

  222. R. L. Jaffe, T. F. George, and K. Morokuma, Calculations of potential energy surfaces in the complex plane. III. Branch-point structure and rational fractions, Mol. Phys. 28, 1489 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tully, J.C. (1976). Nonadiabatic Processes in Molecular Collisions. In: Miller, W.H. (eds) Dynamics of Molecular Collisions. Modern Theoretical Chemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0644-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0644-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0646-8

  • Online ISBN: 978-1-4757-0644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics