Skip to main content

Features of Potential Energy Surfaces and Their Effect on Collisions

  • Chapter

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 2))

Abstract

In this chapter we shall discuss molecular rearrangement collisions that take place on a single potential energy surface. Nonreactive collisions, particularly those involving vibrational energy transfer, are treated in Chapter 4 of Part A; multipotential processes are treated in Chapter 5 of Part B. Because most of the work devoted to the correlation of collision phenomena with features of potential energy functions has been done within the framework of classical mechanics, the major part of the discussion will utilize the language appropriate to such a description of the motion. For most chemical systems, such a treatment is entirely adequate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Levine and R. B. Bernstein, Energy disposal and energy requirements for elementary chemical reactions, Faraday Discuss. Chem. Soc. 55, 100–112 (1973).

    Article  CAS  Google Scholar 

  2. K. T. Gillen, A. M. Rulis, and R. B. Bernstein, Molecular beam study of the K + Iz reaction, J. Chem. Phys. 54, 2831–2851 (1971).

    Article  CAS  Google Scholar 

  3. G. Hancock, C. Morley, and I. W. M. Smith, Vibrational excitation of CO in the reaction O+CS-NCO+S, Chem. Phys. Lett. 12, 193–196 (1971).

    Article  CAS  Google Scholar 

  4. T. J. Odiorne, P. R. Brooks, and J. V. V. Kaspar, Molecular beam reaction of K with HCI: Effect of vibrational excitation of HCI, J. Chem. Phys. 55, 1980–1983 (1971).

    Article  CAS  Google Scholar 

  5. J. G. Pruett, F. R. Grabiner, and P. R. Brooks, Molecular beam reaction of K with HCI: Effect of translational excitation of reagents, J. Chem. Phys. 60, 3335–3336 (1974).

    Article  CAS  Google Scholar 

  6. D. J. Douglas, J. C. Polanyi, and J. J. Sloan, Effect of reagent vibrational excitation on the rate of a substantially endothermic reaction: HCI (ti = 1–4) + Br+Cl + HBr, J. Chem. Phys. 59, 6679–6680 (1973).

    Article  CAS  Google Scholar 

  7. K. G. Anlauf, P. J. Kuntz, D. H. Maylotte, P. D. Pacey, and J. C. Polanyi, Energy distribution among reaction products, Discuss. Faraday Soc. 44, 183–193 (1967).

    Article  Google Scholar 

  8. J. L. Kinsey, in: MTP International Review of Science (J. C. Polanyi, ed.), Vol. 9, “Chemical Kinetics,” p. 173, Butterworth and Company (Publishers) Ltd., London (1972).

    Google Scholar 

  9. T. Carrington and J. C. Polanyi, in: MTPlnternational Review of Science (J. C. Polanyi, ed.), Vol. 9, “Chemical Kinetics,” p. 135, Butterworth and Company (Publishers) Ltd., London (1972).

    Google Scholar 

  10. P. R. Brooks, Scattering of K atoms from oriented CF3I, Faraday Discuss. Chem. Soc. 55, 299–306 (1973).

    Article  CAS  Google Scholar 

  11. W. A. Chupka, in: Ion-Molecule Reactions (J. L. Franklin, ed.), Vol. 1, Chap. 3, Plenum Press, New York (1972).

    Google Scholar 

  12. R. B. Bernstein and A. M. Rulis, Translational energy dependence of product energy and angular distribution for the K+CH3I- KI+CH3 reaction, Faraday Discuss. Chem. Soc. 55, 293–298 (1973).

    Article  CAS  Google Scholar 

  13. H. Eyring and S. H. Lin, in: Physical Chemistry, An Advanced Treatise (W. Jost, ed.), Vol. VIA, Chap. 3, Academic Press, Inc., New York (1974).

    Google Scholar 

  14. J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 1, “Electronic Structure of Molecules,” McGraw-Hill Book Company, New York (1963).

    Google Scholar 

  15. H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, John Wiley and Sons, Inc., New York (1944).

    Google Scholar 

  16. J. C. Polanyi and J. L. Schreiber, in: Physical Chemistry, An Advanced Treatise (W. Jost. ed.), Vol. VIA, Chap. 6, Academic Press, Inc., New York (1974).

    Google Scholar 

  17. D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  18. D. R. McLaughlin and D. L. Thompson, Ab initio dynamics: HeH++H2→He+H3(C2) classical trajectories using a quantum mechanical potential energy surface, J. Chem. Phys. 59, 4393–4405(1973).

    Article  CAS  Google Scholar 

  19. N. C. Blais and J. B. Cross, Molecular beam kinetics: The differential cross section of the reaction Cl + Br2, J. Chem. Phys. 52, 3580–3586 (1970).

    Article  CAS  Google Scholar 

  20. G. R. North and J. J. Leventhal, Classical superposition phenomena in HZ (v=0)+He reactive collisions, Chem. Phys. Lett. 23, 600–602 (1973).

    Article  CAS  Google Scholar 

  21. N. C. Biais and D. G. Truhlar, Monte Carlo trajectories: Dynamics of the reaction F + D2 on a semi-empirical valence-bond potential energy surface, J. Chem. Phys. 58, 1080–1108 (1973).

    Google Scholar 

  22. J. M. White and D. L. Thompson, Monte Carlo quasiclassical trajectory study of Br + HBr and H + HBr: Effect of reagent vibration and rotation on reaction rates and energy transfer, J. Chem. Phys. 61, 719–732 (1974).

    CAS  Google Scholar 

  23. J. M. White, Trajectory study of reactions in HBr-Br2 systems, J. Chem. Phys. 58, 4482–4495 (1973).

    Article  CAS  Google Scholar 

  24. R. N. Porter, L. B. Sims, D. L. Thompson, and L. M. Raff, Classical dynamical investigations of reaction mechanism in three-body hydrogen-halogen systems, J. Chem. Phys. 58, 2855–2869 (1973).

    Article  Google Scholar 

  25. C. A. Parr, J. C. Polanyi, and W. H. Wong, Distribution of reaction products (theory). VIII. Cl + HI, Cl + DI, J. Chem. Phys. 58, 5–20 (1973).

    Article  CAS  Google Scholar 

  26. J. B. Anderson and R. T. V. Kung, Vibrational population inversion in hydrogen iodide from H+I2-*HI+I, J. Chem. Phys. 58, 2477–2479 (1973).

    Article  CAS  Google Scholar 

  27. J. D. McDonald, Classical trajectory studies of angular distributions of reactions of deuterium atoms with iodine molecules, J. Chem. Phys. 60, 2040–2046 (1974).

    Article  CAS  Google Scholar 

  28. P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and C. E. Young, Energy distribution among products of exothermic reactions. II. Repulsive, mixed, and attractive energy release, J. Chem. Phys. 44, 1168–1184 (1966).

    Article  CAS  Google Scholar 

  29. J. C. Polanyi and W. H. Wong, Location of energy barriers. I. Effect on the dynamics of reactions A + BC, J. Chem. Phys. 51, 1439–1460 (1969).

    Article  CAS  Google Scholar 

  30. B. A. Hodgson and J. C. Polanyi, Location of energy barriers. IV. Effect of rotation and mass on the dynamics of reactions A+BC, J. Chem. Phys. 55, 4745–4757 (1971).

    Article  CAS  Google Scholar 

  31. M. H. Mok and J. C. Polanyi, Location of energy barriers. III. Effect on the dynamics of AB + CD=AC+ BD, J. Chem. Phys. 53, 4588–4604 (1970).

    Article  CAS  Google Scholar 

  32. D. S. Perry, J. C. Polanyi, and C. W. Wilson, Jr., Location of energy barriers. VI, The dynamics of endothermic reactions AB + C, Chem. Phys. 3, 317–331 (1974).

    Article  CAS  Google Scholar 

  33. T. B. Borne and D. L. Bunker, Trajectory studies of halogen atom-molecule exchange reactions, J. Chem. Phys. 55, 4861–4866 (1971).

    Article  CAS  Google Scholar 

  34. D. L. Bunker and N. C. Biais, Monte Carlo calculations. V. Three-dimensional study of a general bimolecular interaction potential, J. Chem. Phys. 41, 2377–2386 (1964).

    Article  CAS  Google Scholar 

  35. F. T. Wall and R. N. Porter, Sensitivity of exchange-reaction probabilities to the potential energy surface, J. Chem. Phys. 39, 3112–3117 (1963).

    Article  CAS  Google Scholar 

  36. J. W. Duff and Donald G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic chemical reactions and product energies in exothermic reactions, J. Chem. Phys. 62, 2477–2491 (1975).

    Article  CAS  Google Scholar 

  37. I. G. Csizmadia, J. C. Polanyi, A. C. Roach, and W. H. Wong, Distribution of reaction products (theory). VII. D+ H2-. DH+H+ using an ab initio potential energy surface, Can. J. Chem. 47, 4097–4099 (1969).

    Article  CAS  Google Scholar 

  38. N. C. Biais and D. L. Bunker, Monte Carlo calculations. II. Reactions of alkali atoms with methyl iodide, J. Chem. Phys. 37, 2713–2720 (1962).

    Article  Google Scholar 

  39. N. C. Biais and D. L. Bunker, Monte Carlo calculations. III. A general study of bimolecular exchange reactions, J. Chem. Phys. 39, 315–323 (1963).

    Article  Google Scholar 

  40. M. Karplus and L. M. Raff, Theoretical investigations of reactive collisions in molecular beams: K + CH3I, J. Chem. Phys. 41, 1267–1277 (1964).

    Article  CAS  Google Scholar 

  41. L. M. Raff and M. Karplus, Theoretical investigations of reactive collisions in molecular beams: K + CH3I and related systems, J. Chem. Phys. 44, 1212–1229 (1966).

    Article  CAS  Google Scholar 

  42. F. O. Ellison, A method of diatomics-in-molecules. I. General theory and application to H2O, J. Am. Chem. Soc. 85, 3540–3544 (1963).

    Article  CAS  Google Scholar 

  43. J. C. Tully, Diatomics-in-molecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58, 1396–1410 (1973).

    Article  CAS  Google Scholar 

  44. P. J. Kuntz, Use of the method of diatomics-in-molecules in fitting ab initio potential surfaces: The system HeHZ, Chem. Phys. Lett. 16, 581–583 (1972).

    Article  CAS  Google Scholar 

  45. B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58, 1925–1937 (1973).

    Article  Google Scholar 

  46. E. Steiner, P. R. Certain, and P. J. Kuntz, Extended diatomics-in-molecules calculations, J. Chem. Phys. 59, 47–55 (1973).

    Article  CAS  Google Scholar 

  47. P. J. Brown and E. F. Hayes, Non-empirical LCAO-MO-SCF study of the energy surface for linear HeHZ, J. Chem. Phys. 55, 922–926 (1971).

    Article  CAS  Google Scholar 

  48. J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, Molecular beam and trajectory studies of reactions of H+ with H2, J. Chem. Phys. 60, 1634–1659 (1974).

    Article  CAS  Google Scholar 

  49. C. W. Bauschlicher, Jr., S. V. O’Neil, R. K. Preston, H. F. Schaefer III, and C. F. Bender, Avoided intersection of potential energy surfaces: The (H+ + H2, H + HZ) system, J. Chem. Phys. 59, 1286–1292 (1973).

    Article  CAS  Google Scholar 

  50. D. R. Yarkony, S. V. O’Neil, H. F. Schaefer III, C. P. Baskin, and C. F. Bender, Interaction potential between two rigid HF molecules, J. Chem. Phys. 60, 855–865 (1974).

    Article  CAS  Google Scholar 

  51. C. F. Bender, P. K. Pearson, S. V. O’Neil, and H. F. Schaefer III, Potential energy surface including electron correlation for the chemical reaction F+H2→FH+H. I. Preliminary surface, J. Chem. Phys. 56, 4626–4631 (1972).

    Article  CAS  Google Scholar 

  52. J. Grosser and H. Haberland, Reactive scattering of hydrogen and deuterium atoms from halogen molecules, Chem. Phys. 2, 342–351 (1973).

    Article  CAS  Google Scholar 

  53. J. O. Hirschfelder, Coordinates which diagonalize the kinetic energy of relative motion, Int. J. Quantum Chem. III5, 17–31 (1969).

    Google Scholar 

  54. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Company, New York (1941).

    Google Scholar 

  55. G. L. Hofacker and R. D. Levine, A non-abiabatic model for population inversion in molecular collisions, Chem. Phys. Lett. 9, 617–620 (1971).

    Article  CAS  Google Scholar 

  56. R. A. Marcus, On the analytical mechanics of chemical reactions: Classical mechanics of linear collisions, J. Chem. Phys. 45, 4500–4504 (1966).

    Article  CAS  Google Scholar 

  57. G. Miller and J. C. Light, Quantum calculations of collinear reactive triatomic systems. III. H+C12-*HCI+CI, J. Chem. Phys. 54, 1643–1651 (1971).

    Article  CAS  Google Scholar 

  58. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. II. Dependence on the potential energy surface, J. Chem. Phys. 56, 2997–3006 (1972).

    Article  CAS  Google Scholar 

  59. D. J. Kouri and M. Baer, Collinear quantum mechanical calculations of the He+Hz proton transfer reaction, Chem. Phys. Lett. 24, 37–40 (1974).

    Article  CAS  Google Scholar 

  60. P. J. Kuntz and W. N. Whitton, Trajectory calculations for the reactions HZ +He →H+HeH, Chem. Phys. Lett. 34, 340–342 (1975).

    Article  CAS  Google Scholar 

  61. J. T. Muckerman, Monte Carlo calculations of energy partitioning and isotope effects in reaction of fluorine atoms with H2, HD, and D2, J. Chem. Phys. 54. 11. 55–1164 (1971).

    Google Scholar 

  62. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. III. The hot-atom reactions of 18F with HD, J. Chem. Phys. 57, 3388–3396 (1972).

    Article  CAS  Google Scholar 

  63. R. L. Wilkins, Monte Carlo calculation of reaction rates and energy distributions among reaction products. I. F+H2-*HF+H, J. Chem. Phys. 57, 912–917 (1972).

    Article  CAS  Google Scholar 

  64. R. L. Wilkins, Monte Carlo calculation of reaction rates and energy distributions among reaction products. II. H+HF(v)-*H2(v’)+F and H+HF(v)-+HF(v’)+H, J. Chem. Phys. 58,3038–3046(1973).

    Google Scholar 

  65. R. L. Wilkins, Monte Carlo calculation of reaction rates and energy distributions among reaction products. III. H+F2-*HF+F and D+F2→DF+F, J. Chem. Phys. 58, 2326–2332 (1973).

    Article  CAS  Google Scholar 

  66. L. T. Cowley, D. S. Horne, and J. C. Polanyi, Infrared chemiluminescence study of the reaction CI+HI-*HCI+I at enhanced collision energies, Chem. Phys. Lett. 12, 144–149 (1971).

    Article  CAS  Google Scholar 

  67. A. M. G. Ding, L. J. Kirsch, D. S. Perry, J. C. Polanyi, and J. L. Schreiber. Effect of changing reagent energy on reaction probability and product energy distribution, Faraday Discuss. Chem. Soc. 55, 252–276 (1973).

    Article  CAS  Google Scholar 

  68. P. M. Hierl, Z. Herman, and R. Wolfgang, Chemical accelerator studies of isotope effects on collision dynamics of ion-molecule reactions: Elaboration of a model for direct reactions, J. Chem. Phys. 53,660–673(1970).

    Article  CAS  Google Scholar 

  69. M. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and S. W. Werner, Dynamics of the reaction Ar’ with D2, J. Chem. Phys. 52, 2698–2708 (1970).

    Article  CAS  Google Scholar 

  70. C. A. Parr, J. C. Polanyi, W. H. Wong, and D. C. Tardy, General discussion, Faraday Discuss. Chem. Soc. 55, 308–309 (1973).

    Google Scholar 

  71. P. J. Kuntz and A. C. Roach, Classical trajectory study of exothermic ion-molecule reactions, J. Chem. Phys. 59, 6299–6311 (1973).

    Article  CAS  Google Scholar 

  72. R. A. LaBudde, P. J. Kuntz, R. B. Bernstein, and R. D. Levine, Classical trajectory study of the K+CH3I reaction, J. Chem. Phys. 59, 6286–6298 (1973).

    Article  CAS  Google Scholar 

  73. R. B. Bernstein, Potential practical applications of basic research in molecular dynamics, Isr. J. Chem. 9, 615–635 (1971).

    CAS  Google Scholar 

  74. K. T. Gillen, B. H. Mahan, and J. S. Winn, Dynamics of the O+ + H2 reaction, J. Chem. Phys. 59, 6380–6396 (1973).

    Article  CAS  Google Scholar 

  75. P. J. Kuntz, Analytical properties of a direct interaction model for gas-phase chemical reactions A+BC-CAB+C, Trans. Faraday Soc. 66, 2980–2996 (1970).

    Article  CAS  Google Scholar 

  76. P. J. Kuntz, The K+CH3I-* KI+CH3 reaction: Interpretation of the product angular and energy distributions in terms of a direct interaction model, Mol. Phys. 23, 1035–1050 (1972).

    Article  CAS  Google Scholar 

  77. A. M. Rulis and R. B. Bernstein, Molecular beam study of the K + CH3I reaction: Energy dependence of the detailed differential reactive cross section, J. Chem. Phys. 57, 5497–5515 (1972).

    Article  CAS  Google Scholar 

  78. N. N. Hijazi and K. J. Laidler, Dynamics of collinear A + BC systems, J. Chem. Phys. 58, 349–353 (1973).

    Article  CAS  Google Scholar 

  79. M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H, H2), J. Chem. Phys. 43. 3259–3287 (1965).

    Article  CAS  Google Scholar 

  80. N. C. Biais, Monte Carlo trajectories: The dynamics of harpooning in alkali-halogen reactions, J. Chem. Phys. 49, 9–14 (1968).

    Article  Google Scholar 

  81. M. Godfrey and M. Karplus, Theoretical investigations of reactive collisions in molecular beams: K + Br2, J. Chem. Phys. 49, 3602–3609 (1968).

    Article  CAS  Google Scholar 

  82. M. H. Mok and J. C. Polanyi, Location of energy barriers. II. Correlation with barrier beight, J. Chem. Phys. 51, 1451–1469 (1969).

    Article  CAS  Google Scholar 

  83. W. B. Miller, S. A. Safron, and D. R. Herschbach, Exchange reactions of alkali atoms with alkali halides: A collision complex mechansm, Discuss. Faraday Soc. 44, 108–122 (1967).

    Article  Google Scholar 

  84. A. C. Roach and M. S. Child, Electronic potential energy surfaces for the reaction K+NaC1–KC1+Na, Mol. Phys. 14, 1–15 (1968).

    Article  CAS  Google Scholar 

  85. G. H. Kwei, B. P. Boffardi, and S. F. Sun, Classical trajectory studies of long-lived collision complexes. I. Reaction of K atoms with NaCI molecules, J. Chem. Phys. 58, 1722–1734 (1973).

    Article  CAS  Google Scholar 

  86. I. G. Csizmadia, R. E. Kari, J. C. Polanyi, A. C. Roach, and M. A. Robb, Ab initio SCF-MO-CI calculations for H, H2, and H3 using Gaussian basis sets, J. Chem. Phys. 52, 6205–6211 (1970).

    Article  CAS  Google Scholar 

  87. I. W. M. Smith, Experimental and computer studies of the kinetics and distribution of vibrational energy in both products of the reaction O(3P)+CS2→SO + CS, Discuss. Faraday Soc. 44, 1964–1974 (1967).

    Article  Google Scholar 

  88. L. M. Raff, Classical Monte Carlo analysis of four-body reactions: K + C2H51 system, J. Chem. Phys. 44, 1202–1211 (1966).

    Article  CAS  Google Scholar 

  89. P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, and W. H. Wong, Distribution of reaction products. VI. Hot-atom reactions, T + HR, J. Chem. Phys. 52, 4654–4674 (1970).

    Article  CAS  Google Scholar 

  90. D. L. Bunker and M. D. Pattengill, Trajectory studies of hot-atom reactions. I. Tritium and methane, J. Chem. Phys. 53, 3041–3049 (1970).

    Article  CAS  Google Scholar 

  91. T. Valencich and D. L. Bunker, Energy-dependent cross sections for the tritium-methane hot-atom reactions, Chem. Phys. Lett. 20, 50–52 (1973).

    Article  CAS  Google Scholar 

  92. L. M. Raff, Theoretical investigations of the reaction dynamics of polyatomic systems: Chemistry of the hot-atom systems (T + CI-14) and (T + CD4), J. Chem. Phys. 60, 2220–2244 (1974).

    Article  CAS  Google Scholar 

  93. P. J. Kuntz, M. H. Mok, and J. C. Polanyi, Distribution or reaction products. V. Reactions forming an ionic bond, M+XC (3D), J. Chem. Phys. 50, 4623–4652 (1969).

    Article  CAS  Google Scholar 

  94. P. J. Kuntz and A. C. Roach, Ion-Molecule reactions of the rare gases with hydrogen, J. Chem. Soc. Faraday Trans. II 68, 259–280 (1972).

    Article  CAS  Google Scholar 

  95. S. Chapman and R. K. Preston, Nonadiabatic molecular collisions: Charge exchange and chemical reaction in the Ar+ + H2 system, J. Chem. Phys. 60, 650–659 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuntz, P.J. (1976). Features of Potential Energy Surfaces and Their Effect on Collisions. In: Miller, W.H. (eds) Dynamics of Molecular Collisions. Modern Theoretical Chemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0644-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0644-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0646-8

  • Online ISBN: 978-1-4757-0644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics