Skip to main content

Light Scattering and Non-Gaussian Fields

  • Conference paper
  • 373 Accesses

Abstract

Non-Gaussian fluctuations in scattered waves are a subject of longstanding interest. Almost all naturally occurring scattering phenomena visible to the naked eye, ranging from the glittering of random crystallites such as frost to the twinkling of starlight are non-Gaussian in character. Moreover, many important fading phenomena at other frequencies of the electromagnetic spectrum and also those resulting from acoustic wave scattering are non-Gaussian. Thus it is not surprising that many theoretical investigations of this kind of scattering have been pursued over the years. The acquisition of consistent statistical data on natural phenomena is a notoriously difficult task, however, because of the large number of uncontrolled variables both known and unknown which affect the measurements. This is particularly true of large-scale Geophysical phenomena such as ionospheric or interplanetary scintillation of radio waves, but also limits the reproducibility of optical data on long path laser propagation for example. Controlled laboratory experiments clearly provide the best means for testing non-Gaussian scattering theories and this limits such work to the shorter electromagnetic wavelengths. On the other hand coherent radiation is not essential for the investigation of non-Gaussian scattering — indeed the use of coherent waves introduces the extra complication of interference effects — so one is led to ask why quantitative laboratory experiments were not carried out until relatively recently?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Jakeman and P. N. Pusey in Inverse Scattering Problems in Optics Vol 20 of Topics in Current Physics ( Springer Verlag, Berlin, 1980 ) pp 73–116.

    Book  Google Scholar 

  2. B. B.Mandelbrot, Fractals ( Freeman, San Francisco, 1977 ).

    Google Scholar 

  3. P. N. Pusey in Photon Correlation Spectroscopy and Velocimetry Eds H. Z. Cumminsand E. R. Pike ( Plenum, New York, 1977 ).

    Google Scholar 

  4. Lord Rayleigh, Phil. Mag. 6 321–47, (1919).

    Google Scholar 

  5. E. Jakeman Proc. Soc. Photo-Opt. Instrum.Eng. 243, 9–19, (1980).

    Google Scholar 

  6. P. N. Pusey and E. Jakeman J. Phys. A:Math.Gen. 8 392–410 (1975).

    Article  ADS  Google Scholar 

  7. J. C. Dainty ed. Laser Speckle and Related Phenomena Vol 9 of Topics in Applied Physics ( Springer-Verlag, Berlin, 1975 ).

    Google Scholar 

  8. H. G. Booker, J. A. Ratcliffe and D. H. Shinn Phil.Trans.Roy. Soc A 242 579–607 (1950).

    MATH  MathSciNet  Google Scholar 

  9. G. Parry, P. N. Pusey, E Jakeman and J. G. McWhirter in Coherence and Quantum Optics IV L. Mandel and E. Wolf eds ( Plenum, New York 1978 ), pp 351–361.

    Google Scholar 

  10. G. S. Brown, IEEE Trans Antennas Propagat. AP-26 472–82 (1978).

    Google Scholar 

  11. E. Jakeman and J. G. McWhirter J Phys A:Math.Gen 10, 1599–1643 (1977).

    Article  ADS  Google Scholar 

  12. M. V. Berry, J.Phvs A 10 2061–2081 (1977).

    ADS  MATH  Google Scholar 

  13. E. E. Salpeter Astrophys. J. 147, 433–48 (1967).

    Article  ADS  Google Scholar 

  14. E. Jakeman and J. G. McWhirter Appl. Phys. B26, 125–131 (1981).

    Google Scholar 

  15. J. G. Walker and E. Jakeman Optica Acta, 29, 313–324 (1982).

    Article  ADS  Google Scholar 

  16. V. I. Tatarski Wave Propagation in a Turbulent Medium ( New York: McGraw - Hill, 1961 ).

    Google Scholar 

  17. M. V. Berry J. Phys. A 12 781–797 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. D. L. Jordon, R. Hollins and E. Jakeman Appl. Phys. B 31 (1983).

    Google Scholar 

  19. Y. Furuhama, Radio Science 10 1037–42 1975.

    Article  ADS  Google Scholar 

  20. E. Jakeman and P. N. Pusey Phys. Rev. Lett. 40 546–50 (1978).

    Article  ADS  Google Scholar 

  21. E. Jakeman J.Phys A 13 31–48 (1980).

    Article  ADS  MATH  Google Scholar 

  22. E. Jakeman. J.Phys A 15 L55–59 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Jakeman, J.Opt.Soc.Am 72 1034–1041 (1982).

    Google Scholar 

  24. E. Jakeman, Optica Acta to be published.

    Google Scholar 

  25. E. Jakeman and B. J. Hoenders Optica Acta 29 1587–1598 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this paper

Cite this paper

Jakeman, E. (1984). Light Scattering and Non-Gaussian Fields. In: Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics V. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0605-5_153

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0605-5_153

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0607-9

  • Online ISBN: 978-1-4757-0605-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics