Skip to main content

Trapped and Cooled Atomic Particles for Spectroscopy

  • Conference paper
Coherence and Quantum Optics V

Abstract

High-resolution spectroscopy of atomic particles requires the eliminations of at least three types of spectral line broadening: Doppler broadening, collision broadening, and transit time broadening, which results from a limited time duration of the interaction of the particles with the electromagnetic field. These sources of line broadening contribute in various proportions depending on the frequency range of the radiation and on the experimental geometric arrangement of particles and waves in a particular interaction scheme. When radio-frequency radiation and microwaves interact with atomic beams, transit-time broadening — here the principal broadening mechanism — has been successfully circumvented, as early as in the fortieth, by the application of two widely separated interaction regions and the corresponding generation of “Ramsey fringes”.|1| On the other hand, microwave spectroscopy of the ground state hyperfine transitions of 3He+ spatially confined in a suitable electromagnetic field, a so-called “trap”, resulted 1965 in the spectral resolution of 1 in 109 by Fortson, Major, and Dehmelt at the University of Seattle |2|. Even a resolution of 2 parts in 1010 was demonstrated 1973 by Major and Werth |3| with a ground state hyperfine transition of trapped 199Hg+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.F. Ramsey, Phys. Rev. 76, 966 (1949)

    Article  Google Scholar 

  2. E.N. Fortson, F.G. Major, and H.G. Dehmelt, Phys. Rev. Letters 16, 221 (1966)

    Article  ADS  Google Scholar 

  3. F.G. Major and G. Werth, Phys. Rev. Letters 30, 1155 (1973)

    Article  ADS  Google Scholar 

  4. Th. Hânsch and P.E. Toschek, IEEE J. Quantum Electronics QE-4, 467 (1968); Proc. of the Joint Conference on Lasers and OptoElectronics, p. 148, Southampton, 1969

    Google Scholar 

  5. P.W. Smith and T. Hânsch, Phys. Rev. Lett. 26, 740 (1971)

    Article  ADS  Google Scholar 

  6. T.W. Hânsch, M.D. Levenson, A.L. Schawlow, and P.E. Toschek, Bull. Am. Phys. Soc. 16, 310 (1971)

    Google Scholar 

  7. P. Jacquinot, in “High-Resolution Laser Spectroscopy”, K. Shimoda, ed., p. 51, Springer-Verlag, Berlin, 1976

    Google Scholar 

  8. Ye. V. Baklanov, B. Ya. Dubetskij, and V.P. Chebotaev, Appl. Phys. 9, 171 (1976) and 11, 201 (1976)

    Google Scholar 

  9. J.C. Bergquist, S.A. Lee, and J.L. Hall, in “Laser SpectroscopyIII”, J.L. Hall and J.L. Carsten, eds., p. 142, Springer-Verlag, Berlin, 1977

    Google Scholar 

  10. M.M. Salour and C. Cohen-Tannoudji, Phys. Rev. Lett. 38, 757 (1977)

    Article  ADS  Google Scholar 

  11. J.C. Bergquist, R.L. Barger, and D.J. Glaze, in “Laser Spectroscopy IV”, H. Walther and K.W. Rothe, eds., p. 120, Springer-Verlag, Berlin, 1979

    Google Scholar 

  12. R. Iffländer and G. Werth, Metrologia 13, 167 (1977)

    Article  ADS  Google Scholar 

  13. W. Neuhauser, G. Förster, P.E. Toschek, and H.G. Dehmelt, J. Opt. Soc. Am. 68, 623 (1978)

    ADS  Google Scholar 

  14. R.H. Dicke, Phys. Rev. 89, 472 (1953)

    Article  ADS  Google Scholar 

  15. D.J. Wineland and H.G. Dehmelt, Bull. Amer. Phys. Soc. 20, 637 (1975)

    Google Scholar 

  16. T.W. Hänsch and A.L. Schawlow, Opt. Communic. 13, 68 (1975)

    Article  ADS  Google Scholar 

  17. W. Neuhauser, M. Hohenstatt, P.E. Toschek and H. Dehmelt, Phys. Rev. Letters 41, 233 (1978)

    Article  ADS  Google Scholar 

  18. D.J. Wineland, R.E. Drullinger, and F.L. Walls, Phys. Rev. Letters 40, 1639 (1978)

    Article  ADS  Google Scholar 

  19. F.M. Penning, Physica 3, 873 (1936)

    Article  Google Scholar 

  20. R.S. Van Dyck, Jr., P.B. Schwinberg, and H. Dehmelt, in: “New Frontiers in High-Energy Physics”, B.M. Kursunoglu, A. Perlmutter, and L.F. Scott, eds., Plenum, New York, p. 159, 1978

    Google Scholar 

  21. W. Paul, O. Osberghaus, and E. Fischer, Forschungsber. d. Wirtsch.- u. Verkehrsministeriums NRW, Nr. 415 (1958) - E. Fischer, Z. Physik 156, 1 (1959)

    Google Scholar 

  22. R.F. Wuerker, H. Shelton, and R.V. Langmuir, J. Appl. Phys. 30, 342 (1959)

    Article  ADS  Google Scholar 

  23. D.A. Church and H.G. Dehmelt, J. Appl. Phys. 40, 3421 (1969)

    Article  ADS  Google Scholar 

  24. W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H. Dehmelt, Phys. Rev. A22, 1137 (1980)

    Article  ADS  Google Scholar 

  25. J. Javanainen, Appl. Phys. 23, 175 (1980)

    Article  ADS  Google Scholar 

  26. W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H. Dehmelt, Appl. Phys. 17, 123 (1978)

    Article  ADS  Google Scholar 

  27. P.E. Toschek and W. Neuhauser, in “Atomic Physics 7”, D. Kleppner and F.M. Pipkin, eds., Plenum, New York, N.Y., 1981

    Google Scholar 

  28. D.J. Wineland and W.M. Itano, Phys. Letters 82A, 75 (1981)

    Google Scholar 

  29. W. Nagourney, G. Janik, and H. Dehmelt, Proc. Natl. Acad. Sci. USA 80, 643 (1983)

    Article  ADS  Google Scholar 

  30. R. Blatt and G. Werth, Phys. Rev. A 25, 1476 (1982)

    Article  ADS  Google Scholar 

  31. R. Blatt, H. Schmatz, and G. Werth, Phys. Rev. Letters 48, 1601 (1982)

    Article  ADS  Google Scholar 

  32. R.E. Drullinger, D.J. Wineland, and J.C. Bergquist, Appl. Phys. 22, 365 (1980)

    Article  ADS  Google Scholar 

  33. D.J. Wineland, J.C. Bergquist, W.M. Itano, and R.E. Drullinger, Opt. Lett. 5, 245 (1980)

    Article  ADS  Google Scholar 

  34. W.M. Itano and D.J. Wineland, Phys. Rev. A24, 1364 (1981). - “Laser Spectroscopy V”, p. 360, A.R.W. ‘tKellar, T. Oka, and V.P. Stoicheff, eds., Springer, Berlin, 1981

    Google Scholar 

  35. D.J. Wineland, J.J. Bollinger, and W.M. Itano, Phys. Rev. Letters 50, 628 (1938)

    Article  ADS  Google Scholar 

  36. H.G. Bennewitz, W. Paul, and Ch. Schlier, Z. Phys. 141, 6 (1955)

    Article  ADS  Google Scholar 

  37. W.H. Wing, Phys. Rev. Lett. 45, 631 (1980)

    Article  Google Scholar 

  38. H. Friedburg and W. Paul, Z. Phys. 130, 493 (1952)

    Article  Google Scholar 

  39. K.J. Kûgler, W. Paul, and U. Trinks, Phys. Letters B, 72, 442 (1978)

    Article  Google Scholar 

  40. V.S. Letokhov and V.G. Minogin, Opt. Communic. 35, 199 (1980)

    Article  ADS  Google Scholar 

  41. J.E. Bjorkholm, R.R. Freeman, A. Ashkin, and D.B. Pearson, in “Laser Spectroscopy IV”, p. 49, H. Walther and K.W. Rothe, eds., Springer-Verlag, Berlin, 1979

    Google Scholar 

  42. A. Ashkin and J.P. Gordon, Opt. Letters 4, 161 (1979)

    Article  ADS  Google Scholar 

  43. V.I. Balykin, V.S. Letokhov, and V.I. Mishin, Pis’ma Zh. Eksp. Teor. Fiz. 29,614 (1979) JETP Lett. 29,560 (1979)I

    Google Scholar 

  44. J.V. Prodan, W.A. Phillips, and H. Metcalf, Phys. Rev. Lett. 49, 1149 (1982)

    Article  ADS  Google Scholar 

  45. J.H. Malmberg and T.M. O’Neil, Phys. Rev. Lett. 39, 1333 (1977)

    Article  ADS  Google Scholar 

  46. C.F. Driscoll and J.H. Malmberg, Phys. Rev. Lett. 50, 167 (1983)

    Article  ADS  Google Scholar 

  47. D.J. Wineland, Proc. 13th Ann. PTTI Application and Planing Meeting; Naval Res. Lab., Washington DC, 1981

    Google Scholar 

  48. D.J. Wineland, W.M. Itano, J.C. Bergquist, and F.L. Walls, Proc. 35th Ann. Symp. on Freq. Control, Philadelphia, Pa, 1981

    Google Scholar 

  49. H.G. Dehmelt, Bull. Amer. Phys. Soc. 18, 1521 (1973);

    Google Scholar 

  50. H.G. Dehmelt, ibid, 20, 60 (1975)

    Google Scholar 

  51. W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H.G. Dehmelt, in “Spectral Line Shapes”, B. Wende, ed., p. 1045, W. de Gruyter, Berlin, 1981

    Google Scholar 

  52. R. Schneider and G. Werth, Z. Physik A 293, 103 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this paper

Cite this paper

Toschek, P.E., Neuhauser, W., Hohenstatt, M. (1984). Trapped and Cooled Atomic Particles for Spectroscopy. In: Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics V. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0605-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0605-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0607-9

  • Online ISBN: 978-1-4757-0605-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics