Skip to main content

Cavitation in Liquid Cryogens

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 14))

Abstract

Cavitation is usually defined as the formation, caused by a reduction in pressure, of a vapor phase within a flowing liquid, or at the interface between a liquid and a solid surface. For incipient cavitation, this definition is somewhat ambiguous because various criterion and methods are used to detect the vapor phase. Incipient cavitation usually refers to the fluid condition where the vapor phase is barely visible to the unaided eye. The visual inception criterion is used because the sensitivity [1–3] of various acoustic detectors can vary appreciably. Pressure and temperature profiles within fully developed cavities recently were measured [4] and are referred to herein as developed-cavitation data.

Experimental work performed under the sponsorship of NASA Lewis Research Center under Contract No. C-35560-A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. P. Kittredge, “Detection and Location of Cavitation”, Rept. MATT-142, Plasma Physics Lab., Princeton University, Princeton, N.J. (1962).

    Google Scholar 

  2. A. F. Lehman and J. O. Young, ASME J. Basic Eng., 86:275 (1964).

    Article  Google Scholar 

  3. J. W. Holl, ed., “Discussions — Symposium on Cavitation Research Facilities and Techniques,” presented at Fluids Eng. Div. Conf., Philadelphia, Pa. (May 18–20, 1964).

    Google Scholar 

  4. J. Hord, D. K. Edmonds, and D. R. Millhiser, “Thermodynamic Depressions Within Cavities and Cavitation Inception in Liquid Hydrogen and Liquid Nitrogen,” NASA Rept. CR-72286 (1968).

    Google Scholar 

  5. J. Hord, R. B. Jacobs, C. C. Robinson, and L. L. Sparks, ASME J, Eng. Power, 86: 485 (1964).

    Article  Google Scholar 

  6. R. S. Brand, “The Motion of a Plane Evaporation Front in a Superheated Liquid,” Tech. Rept. No. 2, University of Connecticut, Storrs, Conn. (1963).

    Google Scholar 

  7. J. A. Clark, “The Thermodynamics of Bubbles,” Tech. Rept. No. 7, Massachusetts Institute of Technologv, Cambridge, Mass. (1956).

    Google Scholar 

  8. J. W. Holl and G. F. Wislicenus, ASME J. Basic Eng., 83: 385 (1961).

    Article  Google Scholar 

  9. M. C. Huppert, W. S. King, and L. B. Stripling, “Some Cavitation Problems in Rocket Propellant Pumps,” presented at ASME Turbo Machinery Conf., Houston, Texas (1959); available from Rocketdyne, Canoga Park, Calif.

    Google Scholar 

  10. V. Ya. Karelin, “Cavitation Phenomena in Centrifugal and Axial Pumps,” NASA accession No. N66–14532 (1963).

    Google Scholar 

  11. W. A. Spraker, ASME J. Eng. Power, 87: 309 (1965).

    Article  Google Scholar 

  12. A. J. Stepanoff, ASME J. Eng. Power, 86: 195 (1964).

    Article  Google Scholar 

  13. W. W. Wilcox, P. R. Meng, and R. L. Davis, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 446.

    Google Scholar 

  14. A. Hollander, ARS J., 32: 1594 (1962).

    Google Scholar 

  15. T.. F. Gelder, R. S. Ruggeri, and R. D. Moore, “Cavitation Similarity Considerations Based on Measured Pressure and Temperature Depressions in Cavitated Regions of Freon 114”, NASA TN D-3509 (1966).

    Google Scholar 

  16. I. I. Pinkel, M. J. Hartmann, C. H. Hauser, M. J. Miller, R. S. Ruggeri, and R. F. Soltis, “Pump Technology,” NASA accession No. N66–33672 (1966).

    Google Scholar 

  17. R. S. Ruggeri and T. F. Gelder, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 304.

    Google Scholar 

  18. R. S. Ruggeri, private communication.

    Google Scholar 

  19. R. S. Ruggeri, R. D. Moore, and T. F. Gelder, “Incipient Cavitation of Ethylene Glycol in a Tunnel Venturi,” NASA TN D-2772 (1965).

    Google Scholar 

  20. R. S. Ruggeri and T. F. Gelder, “Effects of Air Content and Water Purity on Liquid Tension at Incipient Cavitation in Venturi Flow,” NASA TN D–1459 (1963).

    Google Scholar 

  21. R. S. Ruggeri and T. F. Gelder, “Cavitation and Effective Liquid Tension of Nitrogen in a Tunnel Venturi,” NASA TN–2088 (1964).

    Google Scholar 

  22. T. F. Gelder, R. D. Moore, and R. S. Ruggeri, “Incipient Cavitation of Freon-114 in a Tunnel Venturi,” NASA TN D–2662 (1965).

    Google Scholar 

  23. Flow Measurement, Chap. 4, Part 5, ASME, New York (1959), p. 17.

    Google Scholar 

  24. R. S. Ruggeri and R. D. Moore, “Method for Prediction of Pump Cavitation Performance in Various Liquids,” to be published.

    Google Scholar 

  25. R. D. Moore and R. S. Ruggeri, “The Prediction of Thermodynamic Effects of Developed Cavitation Based on Liquid Hydrogen and Freon-114 Data in Scaled Venturis,” to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this paper

Cite this paper

Edmonds, D.K., Hord, J. (1969). Cavitation in Liquid Cryogens. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0549-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0549-2_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0551-5

  • Online ISBN: 978-1-4757-0549-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics