Skip to main content

Liquid Temperature Effects on Thermally Influenced Transition Currents of Nb-Alloy Superconducting Solenoids in He I and He II

  • Conference paper
  • 301 Accesses

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 13))

Abstract

In some technical applications of superconductivity dissipative processes cannot be avoided and heat removal is necessary, at least for a limited period of time. The thermal energy often flows through several solid materials and finally has to be transmitted to cryogenic liquid or fluid. At the λ-point, because of the change from He I to superfluid He II, the thermal boundary conductance is affected by the quantum condensation phenomenon. In particular, at the peak heat flux, prior to the onset of film boiling, the thermal conductance is changed distinctly. Therefore, when thermal boundary effects are relatively large in comparison to other impedances, the λ-transition is expected to change the values of thermally limited quenching currents of superconductivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Easson, P. Hlawiczka, and J M. Ross, Phys. Lett., 20:465 (1966).

    Article  Google Scholar 

  2. W. B. Sampson, M. Strongin, A. Paskin, and G. M. Thompson, Appl. Phys. Lett., 8:191 (1966).

    Article  Google Scholar 

  3. R. E. Hintz and C. Laverick, Proc. Intern. Symposium on Magnet Technology, SLAC, Stanford University, (1965), p. 568.

    Google Scholar 

  4. Z. J. J. Stekly, J. Appl Phys., 37:324 (1966).

    Article  Google Scholar 

  5. C. N. Whetstone, G. G. Chase, J. W. Raymond, J B. Vetrano, R. W. Boom, A. G. Prodell, and H. A. Worwetz, IEEE Trans. Magn. MAG-2(3):307 (1966).

    Article  Google Scholar 

  6. E. C. Rogers, Phys. Letters, 22:365 (1966).

    Article  Google Scholar 

  7. T. Frederking, Forschung, 27:17 (1961).

    Google Scholar 

  8. G. P. Lemieux and A. C. Leonard, in: Advances in Cryogenic Engineering, Vol, 13, Plenum Press, New York (1968).

    Google Scholar 

  9. S. G. Sydoriak and T. R. Roberts, in: Liquid Helium Technology, Bull, Intern, Inst. Refrigeration, Annexe 1966–5, p. 115.

    Google Scholar 

  10. J. B. Vetrano and R. W. Boom, J. Appl. Phys., 36:1179 (1965).

    Article  Google Scholar 

  11. J. Sutton and C. Baker, Phys. Letters, 21:601 (1966).

    Article  Google Scholar 

  12. F. W. Reuter, K. M. Rails, and J. Wulff, Trans, Met. Soc. AIME, 236:1143 (1966).

    Google Scholar 

  13. Y. Shapira and L. J. Neuringer, Phys. Rev., 140:A1638 (1965).

    Article  Google Scholar 

  14. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev., 139:A1163 (1965).

    Article  Google Scholar 

  15. R. C. Wolgast, H. P. Hernandez, P. R. Aron, H. C. Hitchcock, and K. A. Solomon, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 601.

    Google Scholar 

  16. C. Laverick, Cryogenics, 5:152 (1965).

    Article  Google Scholar 

  17. R. Weyl and I. Dietrich, Cryogenics, 5:9 (1965).

    Article  Google Scholar 

  18. A. El Bindari, R. E Bernert, and L. O. Hoppie, Bull. Am. Phys. Soc., 12:39 (1967).

    Google Scholar 

  19. B. W. Clement and T. H. K. Frederking, in: Liquid Helium Technology, Bull. Intern, Inst. Refrigeration, Annexe 1966–5, p. 49.

    Google Scholar 

  20. G. Bon Mardion, B. B. Goodman, and A. Lacaze, Cryogenics, 4:26 (1964).

    Article  Google Scholar 

  21. K. G. Gunther and H. Freller, Cryogenics, 7:50 (1967).

    Article  Google Scholar 

  22. J. K. Hulm and R. D. Blaugher, Phys. Rev., 123:1569 (1961).

    Article  Google Scholar 

  23. J. K. Hulm, private communication.

    Google Scholar 

  24. R. J. Hesser, M.S. Thesis, University of California, Los Angeles (1966)

    Google Scholar 

  25. R. J. Hesser, Bull, Am, Phys. Soc., Ser. II, 12(3):373 (1967).

    Google Scholar 

  26. C. Nanmey, Appl. Phys. Letters, 1:71 (1962).

    Article  Google Scholar 

  27. G. G. Harman and L. H. Gordy, Cryogenics, 7:89 (1967).

    Article  Google Scholar 

  28. C. Nanney, Phys. Rev. Letters, 16:313 (1966).

    Article  Google Scholar 

  29. D. B. Sullivan and C. E. Roos, Phys, Rev, Letters, 18:212 (1967).

    Article  Google Scholar 

  30. M. N. Wilson, in: Liquid Helium Technology, Bull. Intern. Inst. Refrigeration, Annexe 1966–5, p. 109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Frederking, T.H.K., Linnet, C. (1995). Liquid Temperature Effects on Thermally Influenced Transition Currents of Nb-Alloy Superconducting Solenoids in He I and He II. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0516-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0516-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0518-8

  • Online ISBN: 978-1-4757-0516-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics