Skip to main content

Human ovarian surface epithelium: growth patterns and differentiation

  • Chapter
Ovarian Cancer 3

Abstract

The ovarian surface epithelium (OSE) is the modified pelvic mesothelium that covers the ovary. It comprises only a minute fraction of the total ovarian mass but it is thought to be the source of most human ovarian carcinomas, including those varieties that contribute most to cancer mortality [1]. The precise causes of ovarian cancer are not known. However, it is likely that important clues will be obtained by a thorough understanding of the development, structure and functions of the surface epithelium from which these neoplasms arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yancik, R. (1993) Ovarian cancer: age contrasts in incidence, histology, disease stage at diagnosis, and mortality. Cancer, 71, 517–23.

    Article  PubMed  CAS  Google Scholar 

  2. Gondos, B. (1975) Surface epithelium of the developing ovary. Am., J. Pathol., 81,303–20.

    PubMed  CAS  Google Scholar 

  3. Nicosia, S.V. (1983) Morphological changes in the human ovary throughout life. In The Ovary, (ed. G.B. Serra), Raven Press, New York, pp. 57–81.

    Google Scholar 

  4. Motta, P.M. and Makabe, S. (1982) Develop — ment of the ovarian surface and associated germ cells in the human fetus. Cell Tiss. Res., 226,493–510.

    Article  CAS  Google Scholar 

  5. Byskov, A.G. (1986) Differentiation of mammalian embryonic gonad.Physiol. Rev., 66, 71–117.

    Article  PubMed  CAS  Google Scholar 

  6. Godwin, A.K., Testa, J.R. and Hamilton, T.C. (1993) The biology of ovarian cancer development. Cancer, 71,530–6.

    Article  PubMed  CAS  Google Scholar 

  7. Heinonen, P.K., Koivuls, T., Rajameinir, H. and Pystynen, P. (1986) Peripheral and ovarian venous concentrations of steroid and gonadotropin hormones in postmenopausal women with epithelial ovarian tumors. Gynec. Oncol., 25,1–10.

    Article  CAS  Google Scholar 

  8. Auersperg, N., Siemens, C.H. and Myrdal, S.E. (1984) Human ovarian surface epithelium in primary culture. In Vitro, 20, 743–55.

    Article  PubMed  CAS  Google Scholar 

  9. Siemens, C.H. and Auersperg, N. (1988) Serial propagation of human ovarian surface epithelium in tissue culture, J. Cell. Physiol, 134, 347–56.

    Article  PubMed  CAS  Google Scholar 

  10. Kruk, P.A., Maines-Bandiera, S.L. and Auersperg, N. (1990) A simpHfied method to culture human ovarian surface epithelium. Lab. Invest., 63,132–6.

    PubMed  CAS  Google Scholar 

  11. Kleinman, H.K., McGarvey, M.L., Liotta, L.A. et al, (1982) Isolation and characterization of type IV procollagen, laminin, and heparin sulfate proteoglycan from the EHS sarcoma. Biochem., 21, 6188–93.

    Article  CAS  Google Scholar 

  12. Maines-Bandiera, S.L., Kruk, P.A. and Auersperg, N. (1992) Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am. J. Obstet. Gynecol., 167, 729–35.

    PubMed  CAS  Google Scholar 

  13. Kruk, P.A., Uitto, J., Firth, J.D., Dedhar, S. and Auersperg, N. (1994) Dynamic interactions between human ovarian surface epithelial cells and adjacent extracellular matrix. Submitted.

    Google Scholar 

  14. Greenburg, G. and Hay, E.D. (1986) Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro. Develop. Biol., 115, 363–79.

    Article  PubMed  CAS  Google Scholar 

  15. Greenburg, G. and Hay, E.D. (1988) Cytoskeleton and thyroglobulin expression change during transformation of thyroid epithelium to mesenchyme-like cells. Development, 102, 605–22.

    CAS  Google Scholar 

  16. Zuk, A., Matlin, K. and Hay, E.D. (1989) Type 1 collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity. J. Cell Biol., 108, 903–20.

    Article  PubMed  CAS  Google Scholar 

  17. Noel, A.C., Calle, A., Emonard, H.P. et al, (1991) Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Res., 51,405–14.

    PubMed  CAS  Google Scholar 

  18. Kruk, P.A. and Auersperg, N. (1994) A line of rat ovarian surface epithelium (ROSE) provides a continuous source of complex extracellular matrix. In Vitro Cell Develop. Biol., in press.

    Google Scholar 

  19. Kruk, P.A. and Auersperg, N. (1992) Human ovarian surface epithelial cells are capable of physically restructuring extracellular matrix. Am. J. Obstet, Gynecol., 167,1437–43.

    CAS  Google Scholar 

  20. Bell, E., Ivarsson, B. and Merrill, C. (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro. Proc. Natl Acad. Sci. USA, 76,1274–8.

    Article  PubMed  CAS  Google Scholar 

  21. Clark, R.A.F. (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J. Invest. Dermatol, 94,1285–134-S.

    Article  Google Scholar 

  22. Schiro, J.A., Chan, B.M.C., Roswsit, W.T. et al, (1991) Integrin VLA-2 mediates reorganization and contraction of collagen matrices by human cells. Cell, 67,403–10.

    Article  PubMed  CAS  Google Scholar 

  23. Granada, J.L., Lande, M.A. and Karvonen, R.L. (1990) A human cartilage metalloproteinase with elastolytic activity. Connect. Tissue Res., 24,249–63.

    Article  Google Scholar 

  24. Liotta, L.A., Rao, C.N. and Barsky, S.H. (1983) Tumor invasion and the extracellular matrix. Lab. Invest., 49, 636–49.

    PubMed  CAS  Google Scholar 

  25. Curry, T.E., Dean, D.D., Sanders, S.L. et al, (1989) The role of ovarian proteases and their inhibitors in ovulation. Steroids, 54, 501–21.

    Article  PubMed  CAS  Google Scholar 

  26. Ny, T., Bjersing, L., Hsueh, A.J.W. and Loskutoff, D.J. (1985) Cultured granulosa cells produce two plasminogen activators and an antiactivator, each regulated differently by gonadotropins. Endocrinol, 116,1666–8.

    Article  CAS  Google Scholar 

  27. Auersperg, N., MacLaren, I.A. and Kruk, P.A. (1991) Ovarian surface epithelium: autonomous production of connective tissue- type extracellular matrix. Biol Reprod., 44, 717–24.

    Article  PubMed  CAS  Google Scholar 

  28. Nicosia, S.V. (1987) The aging ovary. Med. Clin. N. Am., 71,1–9.

    PubMed  CAS  Google Scholar 

  29. Auersperg, N., Kruk, P.A. and Maines- Bandiera, S.L. (1994) Characterization of cultured human ovarian surface epithelial cells: phenotypic plasticity and premalignant changes. Lab. Invest., in press.

    Google Scholar 

  30. Czernobilsky, B. (1985) Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa, and rete ovarii cells of the human ovary. Eur. J. Cell Biol., 37,175–90.

    PubMed  CAS  Google Scholar 

  31. Czernobilsky, B., Moll, R., Franke, W.W. et al, (1984) Intermediate filaments of normal and neoplastic tissues of the female genital tract with emphasis on problems of differential tumor diagnosis. Pathol Res. Pract., 179, 31–7.

    Article  PubMed  CAS  Google Scholar 

  32. Frankel, A.E., Ring, D.B., Tringale, F. and Hsieh-Ma, S.T. (1985) Tissue distribution of breast cancer-associated antigens defined by monoclonal antibodies. J. Biol Response Mod., 4, 273–86.

    PubMed  CAS  Google Scholar 

  33. Eidelman, S., Damsky, C.H., Wheelock, M.J. and Damjanov, I. (1989) Expression of the cell-cell adhesion glycoprotein cell-CAM 120/80 in normal human tissues and tumors. Am. J. Pathol., 135,101–10.

    PubMed  CAS  Google Scholar 

  34. Hamilton, T.C., Young, R.C., McKoy, W.M. et al, (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res., 43, 5379–89.

    PubMed  CAS  Google Scholar 

  35. Fogh, J. and Tremple, G. (1975) New human tumor cell lines. InHuman Tumor Cells in Vitro, (ed. J. Fogh), Plenum Publishers, New York, pp. 115–60.

    Google Scholar 

  36. Maines-Bandiera, S.L. and Auersperg, N. (1993) Progression of E-cadherin expression in normal human ovarian surface epithelial cells and ovarian carcinomas. Proc. Am. Assoc. Cancer Res., 34,32.

    Google Scholar 

  37. Berchuck, A., Kohier, M.F., Boente M.P. et al, (1993) Growth regulation and transformation of ovarian epithelium. Cancer, 71, 545–51.

    Article  PubMed  CAS  Google Scholar 

  38. Mills, G.B., Hashimoto, S., Hurteau, J. et al, (1992) Regulation of growth of human ovarian cancer cells. In Ovarian Cancer 2: Biology, Diagnosis and Management, (eds F. Sharp, W.P. Mason and W. Creasman), Chapman & Hall, London, pp. 127–45.

    Google Scholar 

  39. Berchuck, A., Rodriguez, G., Olt, G. et al, (1992) Regulation of growth of normal ovarian epithelial cells and ovarian cancer cell lines by transforming growth factor-β,. Am. J. Obstet. Gynecol., 166, 676–84.

    PubMed  CAS  Google Scholar 

  40. Johnson, G.R., Saeki, T., Auersperg, N. et al, (1991) Response to and expression of amphiregulin by ovarian carcinoma and normal ovarian surface epithelial cells: nuclear locaHzation of endogenous amphiregulin. Biochem. Biophys. Res. Commun., 180,4481–8.

    Article  Google Scholar 

  41. Johnson, G.R., Kannan, B., Shoyab, M. and Stromberg, K. (1993) Amphiregulin induces tyrosine phosphorylation of the epidermal growth factor receptor and pl85erbB2. J. Biol Chem., 268, 2924–31.

    PubMed  CAS  Google Scholar 

  42. Rodriguez, G.C., Berchuck, A., Whitaker, R.S. et al, (1991) Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. Am. J. Obstet. Gynecol., 164, 745–50.

    PubMed  CAS  Google Scholar 

  43. Ziltener, H.J., Maines-Bandiera, S., Schräder, J.W. and Auersperg, N. (1993) Secretion of IL-1, IL-6 and colony stimulating factors by human ovarian surface epithelium. Biol Reprod., 49, 635–41.

    Article  PubMed  CAS  Google Scholar 

  44. Kacinski, B.M., Stanley, E.R., Carter, D. et al, (1989) Circulating levels of CSF-1 (M-CSF) a lymphohematopoietic cytokine may be a useful marker of disease status in patients with malignant ovarian neoplasms. Int. J. Radiation Oncol Biol Phys., 17,159–64.

    Article  CAS  Google Scholar 

  45. Price, F.V., Chambers, S.K., Chambers, J.T. et al, (1993) Colony-stimulating factor-1 in primary ascites of ovarian cancer is a significant predictor of survival. Am. J. Obstet. Gynecol., 168, 520–7.

    PubMed  CAS  Google Scholar 

  46. Kacinski, B.M., Carter, D., Mittal, K. et al, (1990) Ovarian adenocarcinomas express fms-,complementary transcripts and fms, antigen, often with coexpression of CSF-1. Am. J. Pathol., 137,135–47.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Auersperg, N., Maines-Bandiera, S.L., Kruk, P.A. (1995). Human ovarian surface epithelium: growth patterns and differentiation. In: Sharp, F., Mason, P., Blackett, T., Berek, J. (eds) Ovarian Cancer 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0136-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0136-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0138-8

  • Online ISBN: 978-1-4757-0136-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics