Skip to main content

Energetics of Low Affinity Amino Acid Transport into Brain Slices

  • Chapter
  • First Online:
Transport Phenomena in the Nervous System

Abstract

This review concentrates on the following: What is the energy source for low affinity amino acid transport into brain slices? Is it glycolysis, or Ion flux, or both? In this paper, glycolysis refers to “breakdown of carbohydrate to pyruvate by the Embden-Myerhoff-Parnas pathway, irrespective of the subsequent fate of pyruvic acid”40. Neither the Pasteur or the Crabtree effect were examined in our studies25,40

Preliminary accounts of some of the work presented here were reported at New Orleans, La. (Am. Soc. Neurochem., Trans., 5 (1): 93, 1974) and Mexico City, (Am. Soc. Neurochem., Trans., 6 71): 94, 95, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadom, P.N., and Scholefield, P.G., Amino acid transport in brain cortex slices. I. The relationship between energy production and the glucose-dependent transport of glycine, Can. J. Biochem., 40 (1962) 1575–1590.

    CAS  PubMed  Google Scholar 

  2. Baker, P.F., and Potashner, S.J., The dependence of glutamate uptake by crab nerve on external Na+ and K+, Biochim. Biophys. Acta, 249 (1971) 616–622.

    Article  CAS  Google Scholar 

  3. Banay-Schwartz, M., Piro, L., and Lajtha, A., Relationship of ATP levels to amino acid transport in slices of mouse brain. Arch. Biochem. Biophys., 145 (1971) 199–210.

    Article  CAS  Google Scholar 

  4. Banay-Schwartz, M., Teller, D.N., Gergely, A., and Lajtha, A., The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+ and K+ in incubated slices of mouse brain, Brain Research, 71 (1974) 117–131.

    Article  CAS  Google Scholar 

  5. Barnes, E.M., Jr., Multiple sites for coupling of glucose transport to the respiratory chain of membrane vesicles from Axotobacter vinelandii, J. Biol. Chem., 248 (1973) 8120–8124.

    CAS  PubMed  Google Scholar 

  6. Bennett, J.P., Jr., Mulder, A.H., and Snyder, S.H., Neurochemical correlates of synaptically active amino acids, Life Sciences, 15 (1974) 1045–1056.

    Article  CAS  Google Scholar 

  7. Bennun, A., Hypothesis for coupling energy transduction with ATP synthesis or ATP hydrolysis, Nature, New Biol., 233 (1971) 5–8.

    Article  CAS  Google Scholar 

  8. Berger, E.A., Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Nat. Acad. Sei. (U.S.), 70 (1973) 1514–1518.

    Article  CAS  ADS  Google Scholar 

  9. Bull, R.J., and Cummins, J.T., Influence of potassium on the steady-state redox potential of the electron transport chain in slices of rat cerebral cortex and the effect of ouabain, J. Neurochem., 21 (1973) 923–937.

    Article  CAS  Google Scholar 

  10. Bull, R.J., and Lutkenhoff, S.D., Early changes in respiration, aerobic glycolysis and cellular NAD(P)H in slices of rat cerebral cortex exposed to elevated concentrations of potassium, J. Neurochem., 21 (1973) 913–922.

    Article  CAS  Google Scholar 

  11. Christensen, H.N., De Cespedes, C., Handlogten, M.E., and Ronguist, G., Energization of amino acid transport, studied for the Ehrlich ascites tumor cell, Biochlm. Biophys. Acta, 300 (1973) 487–522.

    CAS  Google Scholar 

  12. Colombini, M., Johnstone, R.M., Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells, J. Membrane Biol., 15 (1974) 261–276.

    Article  CAS  Google Scholar 

  13. De Cespedes, C., and Christensen, H.N., Complexity in valinomycin effects on amino acid transport, Biochim. Biophys. Acta, 339 (1974) 139–145.

    Article  Google Scholar 

  14. De Feudis, F.S., Amino acids as central neurotransmitters, Ann. Rev. Pharmacol., 15 (1975) 105–130.

    Article  Google Scholar 

  15. Geek, P., Heinz, E., and Pfeiffer, B., Evidence against direct coupling between amino acid transport and ATP hydrolysis, Biochim. Biophys. Acta, 339 (1974) 419–425.

    Article  Google Scholar 

  16. Click, N.B., Inhibition of transport reactions. In R.M. Höchster, M. Kates and J.H. Quastel (Eds.), Metabolic Inhibitors, Vol. III, Academic Press, New York, 1972, pp. 2–38.

    Google Scholar 

  17. Goldfischer, S., Moore, C.L., Johnson, A.B., Spiro, A.J., Valsamis, M.P., Wisnieniski, H.K., Ritch, R.H., Norton, W.T., Rapin, I., and Gartner, L.M., Peroxisomal and mitochondrial defects in the cerebrohepato-renal syndrome, Science, 182 (1973) 61–64.

    Article  ADS  Google Scholar 

  18. Gómez-Puyou, A., Sandoval, F., Chavez, E., Freites, D., and De Gomez-Puyou, M.T., Dependency of the ATPase and32P-ATP exchange reaction of mitochondria on K+ and electron transport, Arch. Biochem, Biophys., 153 (1972) 215–225.

    Article  Google Scholar 

  19. Green, D.E., The electromechanochemlcal model for energy coupling in mitochondria, Biochim. Biophys. Acta, 346 (1974) 27–78.

    Article  CAS  Google Scholar 

  20. Heinz, E., and Geek, P., The efficiency of energetic coupling between Na+ flow and amino acid transport in Ehrlich cells -A revised assessment., Biochim. Biophys. Acta, 339 (1974) 426–471.

    Article  CAS  Google Scholar 

  21. Hinds, T.R., Brodie, H.F., Relationship of a proton gradient to the active transport of proline with membrane vesicles from Mycobacterium phlei, Proc. Nat. Acad. Sei., 71 (1974) 1202–1206.

    Article  CAS  ADS  Google Scholar 

  22. Hinkle, P.C., Electron transfer across membranes and energy coupling. Fed. Proc., 32 (1973) 1988–1991.

    CAS  PubMed  Google Scholar 

  23. Kaback, H.R., Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta, 265 (1972) 367–416.

    Article  CAS  Google Scholar 

  24. Kobayashi, H., Kin, E., and Anraku, Y., Transport of sugars and amino acids in bacteria, X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli, J. Biochem., 76 (1974) 251–261.

    Article  CAS  Google Scholar 

  25. Koobs, D.H., Phosphate mediation of the Crabtree and Pasteur effects. Science, 178 (1972) 127–133.

    Article  CAS  ADS  Google Scholar 

  26. Ku, D., Akera, T., Tobin, T., and Brody, T.M., Effects on rubidium on cardiac tissue; Inhibition of Na+, K+-ATPase and stimulation of contractile force, Res. Comm. Chem. Path. Pharmacol., 9 (1974) 431–440.

    CAS  Google Scholar 

  27. Lajtha, A., Transport as control mechanism of cerebral metabolite levels. In A. Lajtha and D.H. Ford (Eds.), Progress in Brain Research, Vol. 29, Elsevier, 1968, pp. 201–216.

    Google Scholar 

  28. Lauger, P., Carrier-mediated ion transport, Science, 178 (1972). 24–30.

    Article  CAS  ADS  Google Scholar 

  29. Levi, G., Kandera, J., and Lajtha, A., Control of cerebral metabolite levels. I. Amino acid uptake and levels in various species. Arch. Biochem. Biophys., 119 (1967) 303–311.

    Article  CAS  Google Scholar 

  30. Lombardi, F.J., and Kaback, H.R., Mechanisms of active transport in isolated bacterial membrane vesicles. VITT. The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem., 247 (1972) 7844–7857.

    CAS  PubMed  Google Scholar 

  31. MacDonald, R. E., and Lanyr, J.K., Light-induced leucine transport in Halobacterium halobium envelope vesicles, A chemiosmotic system. Biochemistry, 14 (1975) 2882–2888.

    Article  CAS  Google Scholar 

  32. Meijer, A.J., and Van Dam, K., The metabolic significance of anion transport in mitochondria, Biochim. Biophys. Acta, 246 (1974) 213–244.

    Article  Google Scholar 

  33. Melbourne, A.D., and Charalampous, F.C., Energy source for active transport of a-aminoisobutyric acid in KB cells, J. Biol. Chem., 249 (1974) 2793–2800.

    CAS  PubMed  Google Scholar 

  34. Nukada, T., The uptake of glycine by rat mitochondria. Can. J. Biochem., 43 (1965) 1119–1127.

    Article  CAS  Google Scholar 

  35. Prezioso, G., Hong, J.-S., Kerwar, G.K., and Kaback, H.R., Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia Coli uncoupled for oxidative phosphorylation. Arch. Biochem.Biophys., 154 (1973) 575–582.

    Article  CAS  Google Scholar 

  36. Schultz, S.G., and Curran, P.F., Coupled transport of sodium and organic solutes, Physiol. Revs., 50 (1970) 637–718.

    Article  CAS  Google Scholar 

  37. Southard, J.H., and Green, D.E., Control of the energy coupling modes in mitochondria by mercurials, Biochem. Biophys. Res. Comm., 61 (1974) 1310–1316.

    Article  CAS  Google Scholar 

  38. Taylor, A., Hess, J.J., and Maffly, R.H., On the effects of tricarboxylic acid cycle intermediates on sodium transport by the toad bladder, J. Membrane Biol., 15 (1974) 319–329.

    Article  CAS  Google Scholar 

  39. Terry, P.M., Vidaver, G.A., The effect of gramicidin on sodium- dependent accumulation of glycine by pigeon red cells: A test of the cation gradient hypothesis, Biochim. Biophys. Acta, 323 (1973) 441–455.

    Article  CAS  Google Scholar 

  40. Van Eys, J., Regulatory mechanisms in energy metabolism. In D.M. Bonner (Ed.), Control Mechanisms in Cellular Processes, The Ronald Press Co., New York, 1961, pp. 141–166.

    Google Scholar 

  41. Weiss, G.B., and Hertz, L., Effects of different potassium ion concentrations and of procaine and pentobarbital on 14C- glutamate fluxes in rat brain-cortex slices, Biochem. Soc. Trans., 2 (1974) 274–276.

    Article  CAS  Google Scholar 

  42. Wilbrandt, W., Recent trends in membrane transport research. Life Sciences, 16 (1975) 201–212.

    Article  CAS  Google Scholar 

  43. Young, J.H., Korman, E.F., and McLick, J., On the mechanism of ATP synthesis in oxidative phosphorylation: A review, Biorganic Chemistry, 3 (1974) 1–15.

    Article  CAS  Google Scholar 

  44. Note added in proof: HEPES-2 medium contains 119 mM NaCl, 5 mM KCl, 0.75 mM CaClz, 1.2 mM MgSO4, 1 mM NaH2PO4, 1 mM NaHCO3 10 mM glucose, 25 mM HEPES (N-2-hydroxyethylpiperazine N’-2-ethane sulfonic acid), and the pH is adjusted to 7.35 with IN NaOH at 25°. The final Na+ concentration is 132 mEq/1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Banay-Schwartz, M., Teller, D.N., Lajtha, A. (1976). Energetics of Low Affinity Amino Acid Transport into Brain Slices. In: Levi, G., Battistin, L., Lajtha, A. (eds) Transport Phenomena in the Nervous System. Advances in Experimental Medicine and Biology, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-3264-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3264-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-3266-4

  • Online ISBN: 978-1-4684-3264-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics